
Assignment 1 2017

ENGI 9874 Software Specification and Design
Electrical and Computer Engineering

Memorial University

Due Wednesday Oct 18 midnight. By D2L dropbox.

General instructions:
For each question you will be marked on programming style as well as cor-

rectness. To see my opinion about what constitutes good programming style
see http://www.engr.mun.ca/~theo/Courses/ds/pub/style.pdf. In short:

• All .java files must be professionally commented; in particular, each file
should contain a comment header that gives your name, student number,
and mun email address. Each subroutine and class should have a comment
at the start of it. I encourage you to use the “javadoc” conventions for
comments.

• Code and comments must be consistently indented; tab stops should be
set every 4 characters.

• Names must be chosen carefully and spelled correctly. (Use names starting
with lower case letters for variables and methods; use names starting with
upper case letters for classes and interfaces.)

• Use subroutines to avoid redundant coding.

• Keep control structures and data structures simple.

All classes must be tested by you prior to being submitted. You are welcome
to share test code with each other.

The assignment is to be done alone. Each file should contain the following
declaration in comments near the top. “This file was prepared by [your name
here]. It was completed by me alone.”. If you obtained help in doing the
assignment, do not include this declaration, but rather an explanation of the
nature of any help that you received in doing the assignment.

For each question submit a standard zip file containing the source code for
all classes you wrote or modified.
Q0 [35]. The Observer and Command Patterns.
(a) [5] Create a Java interface for mutable sequence of characters. It should

be possible to

1

• Find the current length of the sequence.

• Retrieve any segment as a string.

• Remove any segment of characters.

• Insert a string at any point in the sequence.

• Add an observer.

• Remove an observer.

(b) [10] Create an implementation of the interface that is observable. (There
is no need to make a highly efficient implementation.)

(c) [5] Create JUnit tests that demonstrate that your class functions cor-
rectly.

(d) [10] Use the command pattern to make a class that implements the
interface but also supports undoing and redoing actions. You should reuse the
class created in (b).

(e) [5] Create JUnit tests that demonstrate that your class functions cor-
rectly. Reuse the tests you wrote in (c), but also create some new test that test
the undo/redo.
Q1 [20] Expressions. (The composite pattern and abstract factory

pattern.)
You will implement a set of immutable classes representing expressions in x,

i.e., expressions with one free variable, x. Use at least one abstract class (with
at least one abstract method). Your classes should be subtypes of the following
interface expr.Expression.

interface Expression {

double value(double x) ;

}

Your classes should be able to represent expressions such as sin(2x+π/2). Of
course calling value(double) on an object representing this expression with an
argument of say 0.39270 would give a value of 0.70711.,which is sin(2×0.39270+
π/2)

In addition to implementing the value(double) method, override the toString()
method, which is inherited from java.lang.Object, so that your Expression ob-
jects can be converted to readable strings.

You should also write a class for producing objects that represent expres-
sions. This class should be called expr.ExpressionFactory, have a no-argument
constructor, and implement interface expr.ExpressionFactoryI provided.

So our example expression sin(2x + π/2) can be constructed, printed, and
evaluated via the following code

ExpressionFactoryI f = new ExpressionFactory() ;
Expression a = f.multiply(f.constant(2.0), f.x()) ;

2

Expression b = f.divide(f.constant(Math.PI), f.constant(2.0)) ;
Expression c = f.sin(f.add(a, b)) ;
double x = 0.39270 ;
System.out.println("The value of " +c+ " at " +x+ " is " +c.value(x)) ;

The library class java.lang.Math will be helpful for doing the calculations.
Test your class with the supplied JUnit tests.
[Note on parentheses. In order that everything prints nicely, we use an ex-

plicit operator for parentheses. You may assume that the client that constructs
expressions respects the conventional rules of parenthesization. For example,
it would be an error to use an Expression returned by add as an argument of
multiply. There is no need to check that these preconditions are respected, but
you may if you wish.]
Q2 [10] Graphing
Create a class expr.ChartData with a 0 argument constructor and following

methods

public void setExpression(Expression a)
public Expression getExpression()
public void setXRange(double xMin, double xMax)
public double getXMin()
public double getXMax()
public void setYRange(double yMin, double yMax)
public double getYMin()
public double getYMax()

The following class invariants should be respected

getExpression() != null
Double.NEGATIVE_INFINITY < getXMin()
getXMin() < getXMax()
getXMax() < Double.POSITIVE_INFINITY
Double.NEGATIVE_INFINITY < getYMin()
getYMin() < getYMax()
getYMax() < Double.POSITIVE_INFINITY

The way you will use to ensure these invariants are respected is by using
preconditions for the setter methods –i.e. we will put the responsibility on the
objects’ clients– and by using reasonable defaults in the constructor. These
preconditions should be checked using class util.Assert, which I will supply. The
class invariants should be checked by calling a private invariant method at the
end of the constructor and of each mutator. The invariant method can use
util.Assert to check the invariant.

Once you have implemented this class you should be able to test it with the
supplied JUnit tests and run the supplied.
Bonus. You might want to extend the graphing application to support more

functions and operations. To do this, you will need to modify the parser and

3

you will need to use JavaCC to regenerate the Java classes that make up the
parser. Information on JavaCC can be found online.

Submission: Zip (use zip format) up all files that you have modified or created
and submit via D2L dropbox.

-5 -4 -3 -2 -1 1 2 3 4 5

-1.0

-0.5

0.5

1.0

x

y

4

