
1

Introduction to Computer
Programming

Theodore Norvell,
Dennis Peters, and

Lori Hogan
Enrichment Program, Memorial University

2004--2012

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 2

What is a Computer?

  Hardware view
  Processor
  Memory (RAM)

  Containing
  Data
  Instructions

  Input/output devices
  Monitor
  Keyboard
  Mouse
  Hard drive
  Floppy drive
  CD drive
  Etc

CPU RAM
Instructions

Data

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 3

What is a Computer?

  Software view
  Operating system

  Intermediary between the user, the hardware resources, and the
various application programs

  Programs
  Tools that allow people to do things
  Games, Browsers, Turtle-world, etc.
  May be created by others or by you! Browser

PowerPoint

Eclipse

Operating
System

Programs

Input/Output devices

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 4

Writing your own program

  A program is a recipe for action.
  It tells the computer how to act in response to each

possible input.
  Programs may be written in the language the computer

understands (machine language) or in a “high-level
programming language” such as Java or C++.

  In this course we will modify a program written in the
high-level Java programming language.

  Computers don’t “understand” Java, but Java can be
translated to machine language by another program.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 5

Why program?

  No existing program to do what you want
  It’s a part of your job
  To learn about computation
  For fun and personal satisfaction

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 6

Who programs

  Some professions demand software engineering
skills as a central skill
  Professional Software Engineers
  Computer Scientists
  Computer Engineers

  But in many other professions software engineering
skills can be a useful
  Other Engineers and other mathematical scientists
  Physical Scientists
  Artists

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 7

What is Programming?

  Telling the computer what you want it to do.
  Instructions are written in a programming language (e.g.,

Java, C++).
  An important part of both Computer Engineering and

Computer Science.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 8

Why programming is challenging
  Programming involves logic and time

  It requires imagination!
  It requires precise reasoning!
  A program can be seen as a huge mathematical formula
  Multiple activities interact in complex ways

  Most programs are the work of many people
  This means that good communication skills, clarity about

what you are doing and what you plan to do, and teamwork
are often required.

  Understanding both programming and the problem are
important.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 9

Java

  Java is a high-level programming language
  A language for representing instructions to the computer

  Each Java program is written as a set of classes
  Each class describes the behaviour of zero, one, or

more objects
  When the program is run (executed) it consists of

one or more objects as described by the classes.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 10

Java — Classes and Objects
Classes Objects

A Java program An execution of the program

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 11

What are objects?

  Represent things or concepts relevant to the
problem and/or its solution.
  Real-world things: car, person, apple.
  Concepts: time.
  Program things: button, window.

  Each object is an instance of a class that defines its
behaviour.

  Each object is stored in memory at some location.
  An object may have a name (or more than one

name).

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 12

Object-oriented Programming

  Design programs in terms of the concepts or things
(objects) that are relevant to the task at hand.

  Objects interact by sending messages to each other.
When an object receives a message, it:
  performs some action, or
  provides some information to the sender.

  Objects that behave the same are said to be in the
same class.

  Object Oriented Programming (OOP): define classes
and their behaviour.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 13

Turtle World

  In this course you will program by modifying a
program called “Turtle World”

  (Remember programs are usually the work of many
people)

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 14

Classes in the Turtle-World

  Turtle — represents a simulated robotic turtle.
  Arena — the part of the screen the Turtles are

displayed in.
  Log — a part of the screen to which you can send

text.
  TurtleController — a class that describes how the

program should react to user input.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 15

Some Commands that Send Messages

Basic commands:
  send a message to an object.

  Example:
crush.setPosition(50, 20) ;

  Sends a request to an object named “crush” to change its
position to (50, 20).

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 16

Some Commands that Send Messages
Exercise:

  Find the “TurtleController” class.
  Find the “start” method. It looks like this

public void start() {
}

  Add the “message send command” crush.setPosition(50, 20) ;
so that it looks like this.

public void start() {
 crush.setPosition(50, 20) ;
}

  Save: Save the TurtleController class..
  Run: click on the “Run” on the “Run” menu.
  Try clicking on the “start” button. What happens.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 17

Some Commands that Send Messages

Some messages result in an answer.
  send a message to an object and record the answer

  Example:
double x = crush.getPositionX() ;

  sends a “getPositionX” message to the turtle and names
the answer “x”.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 18

Some Commands that Send Messages
Exercise
  Change the “start” method to look like this

public void start() {
 crush.setPosition(20, 50) ;
 double x = crush.getPositionX() ;
 double y = crush.getPositionY() ;
 log.println(x) ;
 log.println(y) ;
 }

  The command “double x = crush.getPositionX() ;” sends a
“getPositionX” message to the turtle, naming the answer “x”.

  Try running Turtleworld now.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 19

Things to Know in Turtle-World
  What is a pixel?

  It is the smallest possible block on the computer’s screen.

  What do we mean by “speed”?
  We mean how fast the turtle is going in pixels per second.

  What is “rate of change of speed”?
  Similar to acceleration, it means how fast the turtle is

speeding up, in pixels per second per second.

  What is “spin”?
  Spin is how fast the turtle is spinning in degrees per second.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 20

Things to Know in Turtle-World

  What is meant by position?
  The position of a turtle is

the location of the turtle in
comparison to the top left-
hand corner

  What is meant by orientation?
  The orientation of the turtle is

the way it is facing compared to
the right side of the arena. Like
a compass, the measurement
goes clock-wise

y

(40,5)
(0,0)

(5,30)

x

0, 360, -360

45
90, -270 etc 135

180, -180

225
270

315

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 21

Sending messages to the turtle

  Messages (see companion document for full list).
  crush.setSpeed(s) ;

  Exercise: make the turtle start
  Remove the commands you earlier added to “start” so that

it looks like this again
public void start() {

}
  Change the “start” method so that it tells the turtle to move

at a speed of 50 pixels per second.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 22

Sending messages to the turtle (cont.)

  Save: Save the TurtleController class..
  Run: click on the “Run” on the “Run” menu.
  Try clicking on the “start” button.
  What happens?
  Try clicking on the “stop” button.
  What happens?
  Close the Turtle World window.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 23

Sending messages to the turtle (cont.)

  Making the turtle stop
  Find the “method” that the TurtleController executes in

reaction to to the “stop” button being clicked.
  Change this “method” to make the turtle stop.

  Making the turtle go slower/faster or spin at start
  How would you change the “start method” so that the turtle

goes slower or faster? So that the turtle spins?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 24

Sequences of commands
  Commands are followed in the order they appear in

a method.
  Example – What happens when you try this?

crush.setSpeed(100) ;
crush.setSpin(90) ;

  Exercise: Make the turtle go in a circle.
  Modify the “circle” method to make the turtle travel in a

circle.

  Exercise: Change around the order that commands
are given
  Does the order of the commands matter here? In general?

Executed first

Executed second

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 25

Sequences of commands

  The messages to the turtle
  crush.penDown() ;
  crush.penUp() ;

 control whether the turtle leaves a trace behind it of where it
has been.

  Exercise: Modify the “circle” method to draw a circle.
  Exercise: How would you modify the “circle” method to only

draw part of a circle?
  Exercise: Modify the “mySequence” method to do four

different commands (see the companion document for ideas)
and then change the order of them to see if it makes a
difference.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 26

Getting information from the turtle

  The commands
  double x = crush.getPositionX() ;
  double y = crush.getPositionY() ;
  double s = crush.getSpeed() ;
  double alpha = crush.getOrientation() ;
  double vx = crush.getVelocityX() ;
  double vy = crush.getVelocityY() ;
  double a = crush.rateOfChangeOfSpeed() ;
  double omega = crush.spin() ;

 obtain information about the turtle and give that value a name.
(“double” is short for “double precision number”, i.e. these
names stand for numbers.)

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 27

Getting information from the turtle

  Exercise: Turning left.
  Modify the “left” method to turn the turtle left by 30 degrees.
  Hint: first give a name to the current orientation, then use a

“setOrientation” message to turn the turtle. Orientations
are in degrees.

  Another hint. You can add two numbers using the +
operator. For example: X+Y where X and Y are either
numbers or names that stand for numbers.

  Question: Does the order of the commands matter?

  Exercise: Turning right.
  Do the same as the exercise above for the “right” method

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 28

Making choices

  Choose a sequence of commands depending on
whether a condition is true or not!
if (condition) {

 a sequence of commands
} else {

another sequence of commands
}

  Many real-life examples of making choices, can you
think of any?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 29

Making choices

  Example: Speed up the turtle, but not faster than 100
public void faster() {

 double s = crush.getSpeed() ;
 if (s + 5 > 100) {
 crush.setSpeed(100) ;
 } else {
 crush.setSpeed(s + 5) ;
 }

}
  Exercise: Modify “slower” so that the speed is not set to less

than 0.
  Exercise: Modify “mySequence” so that if the turtle is facing

left it turns to the right and vice-versa.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 30

Pausing

  The basic command
pause(t) ;

 causes the TurtleController to wait for t seconds before
executing the next command.

  Exercise: Modify the “start” method so that when the button is
pressed, the turtle travels for 5 seconds and then stops (we
will change it back later!).

  Exercise: Draw a square.
  Modify the “square” method so that the turtle draws a square by

traveling right for 1 second, turning right, traveling down for 1
second, turning right, traveling left for 1 second, turning right,
traveling up for one second and then stopping.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 31

Repetition: Do it some number of times.

  If some commands should be repeated a fixed
number of times:
for (int i = 0; i < N; i++) {

 sequence of commands
}

  Can you think of some real-world examples of where
an iteration loop with a given number of repeats
(also called a “for” loop) is used?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 32

“For” loop example

  Example: Another way to draw a square.
public void hexagon() {

 int N = 4 ;
 crush.penDown() ;
 crush.setSpeed(100) ;
 for (int i = 0 ; i < N ; i++) {
 pause(1) ;
 double alpha = crush.getOrientation() ;
 crush.setOrientation(alpha + 90) ;
 }
 crush.setSpeed(0) ;

}

Command sequence
repeated 4 times.

int stands for
“integer number”

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 33

“For” loop exercises.

  Modify “hexagon” to create an 6 sided polygon.

  Modify your “sequence” method
  Put a “for” loop around your sequence and make it go for

five iterations.
  Add the command
!crush.penDown() ;

 right before it.
  What types of drawings do you come up with?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 34

Repetition: Repeat while needed

  Repeat something as long as some condition is true!
while (condition) {

 sequence of commands
}

  What real-life examples can you come up with
where something is repeated as long as something
else is true (also called a “while” loop because while
something is true we do this)?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 35

“While loop” example

  Make a new button with this method:
public void changeColor() {
 while(crush.getSpeed() > 0) {
 crush.setColor(Color.blue) ;
 pause(0.5) ;
 crush.setColor(Color.red) ;
 pause(0.5) ;
 crush.setColor(Color.black) ;
 pause(0.5) ;
 }
}

  Try starting the turtle. Then click changeColor. When does the
turtle stop changing color.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 36

Combining Commands

There are a number of ways to combine simpler
commands to make more complex commands

  Sequential — do one thing after another.
  In Java, put one command after another.

  Choice — do one command or another depending
on a condition
  In Java, use if-else

  Repetition — do the same things more than once
  In Java, use for-loops or while-loops

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 37

“While” loop exercises

  Change the “for” loop in your “sequence” method to
a “while” loop that keeps going until the speed is
zero (you may have to use “slower” while your turtle
is running through the sequence to slow it down).

  Change this again so that your sequence keeps
going until the speed is either over 100 or under
zero (again, you may have to use the “faster” and
“slower” buttons).

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 38

“While” loop exercises (continued)

  How would you keep your sequence of commands
going “forever”, until you hit “stop”?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 39

New methods

  A “method” is a sequence of commands with a
name.

  Define a new method in a class
public void name () !
{!
!sequence of commands!
}!

  The method name becomes a new message that
the objects of the class understand.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 40

New Method Exercise

  Create new method octagon
  Hint: copy, paste and modify the “body” of the hexagon

method.
  Add octagon to the list of methods activated by

buttons
  Add the word “octagon” to the list named “methodNames”

near the start of the TurtleController.java file.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 41

  Parameters allow variations on a single method.
  Example: When we use the “pause” command we

put a number in the brackets that tells the method
how long to pause for, it looks like

 pause(t);

  t is a parameter. It is a name that stands for different
values at different times. E.g. in the command
pause(0.5) ;

 t stands for 0.5.

Parameters

Parameter

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 42

Parameters exercise

  Try creating a method named “polygon” with a
parameter N.

  Then modify square, hexagon, and octagon to use
it.

  Parameters and methods allow common sequences
of commands to be programmed once and used
over again.
  This is called “procedural abstraction”.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 43

More objects

  Declare that our system contains a new object
 private ClassName objectName = new ClassName(…);!

  Example:
  private Turtle squirt = new Turtle(Color.RED) ;

  Exercise: add a new turtle (call it what you like – I called mine
“squirt”)
  Find the declaration of “crush” in the TurtleController class.
  Add a declaration for “squirt” (as above)
  Find where crush is added to the arena
  add a command to add the “squirt” to the “arena”.
  Add some buttons to control “squirt”

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 44

What is Programming?
  An Art or Craft?

  Is writing a program like writing a book?
  Is it all about effective communication?

  A Mathematical Science?
  Logic is the mathematics of relationships.
  Programming is the mathematics of relationships evolving

through time.

  Engineering?
  The analysis and design of artifacts.
  Programs are artifacts that must be designed and may be

analyzed.
  Perhaps it is all three.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 45

Interesting problems in software
engineering.
  How to solve problems with minimum execution time
  How to solve problems with minimum space
  How to get a large number of people to cooperate

effectively to create large programs
  How to specify what a program should do
  How to avoid programming mistakes (bugs)
  How to find any remaining programming mistakes
  How to know whether a program does what it should

46

The end

