
1

Introduction to Computer
Programming

Theodore Norvell,
Dennis Peters, and

Lori Hogan
Enrichment Program, Memorial University

2004--2012

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 2

What is a Computer?

  Hardware view
  Processor
  Memory (RAM)

  Containing
  Data
  Instructions

  Input/output devices
  Monitor
  Keyboard
  Mouse
  Hard drive
  Floppy drive
  CD drive
  Etc

CPU RAM
Instructions

Data

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 3

What is a Computer?

  Software view
  Operating system

  Intermediary between the user, the hardware resources, and the
various application programs

  Programs
  Tools that allow people to do things
  Games, Browsers, Turtle-world, etc.
  May be created by others or by you! Browser

PowerPoint

Eclipse

Operating
System

Programs

Input/Output devices

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 4

Writing your own program

  A program is a recipe for action.
  It tells the computer how to act in response to each

possible input.
  Programs may be written in the language the computer

understands (machine language) or in a “high-level
programming language” such as Java or C++.

  In this course we will modify a program written in the
high-level Java programming language.

  Computers don’t “understand” Java, but Java can be
translated to machine language by another program.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 5

Why program?

  No existing program to do what you want
  It’s a part of your job
  To learn about computation
  For fun and personal satisfaction

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 6

Who programs

  Some professions demand software engineering
skills as a central skill
  Professional Software Engineers
  Computer Scientists
  Computer Engineers

  But in many other professions software engineering
skills can be a useful
  Other Engineers and other mathematical scientists
  Physical Scientists
  Artists

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 7

What is Programming?

  Telling the computer what you want it to do.
  Instructions are written in a programming language (e.g.,

Java, C++).
  An important part of both Computer Engineering and

Computer Science.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 8

Why programming is challenging
  Programming involves logic and time

  It requires imagination!
  It requires precise reasoning!
  A program can be seen as a huge mathematical formula
  Multiple activities interact in complex ways

  Most programs are the work of many people
  This means that good communication skills, clarity about

what you are doing and what you plan to do, and teamwork
are often required.

  Understanding both programming and the problem are
important.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 9

Java

  Java is a high-level programming language
  A language for representing instructions to the computer

  Each Java program is written as a set of classes
  Each class describes the behaviour of zero, one, or

more objects
  When the program is run (executed) it consists of

one or more objects as described by the classes.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 10

Java — Classes and Objects
Classes Objects

A Java program An execution of the program

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 11

What are objects?

  Represent things or concepts relevant to the
problem and/or its solution.
  Real-world things: car, person, apple.
  Concepts: time.
  Program things: button, window.

  Each object is an instance of a class that defines its
behaviour.

  Each object is stored in memory at some location.
  An object may have a name (or more than one

name).

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 12

Object-oriented Programming

  Design programs in terms of the concepts or things
(objects) that are relevant to the task at hand.

  Objects interact by sending messages to each other.
When an object receives a message, it:
  performs some action, or
  provides some information to the sender.

  Objects that behave the same are said to be in the
same class.

  Object Oriented Programming (OOP): define classes
and their behaviour.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 13

Turtle World

  In this course you will program by modifying a
program called “Turtle World”

  (Remember programs are usually the work of many
people)

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 14

Classes in the Turtle-World

  Turtle — represents a simulated robotic turtle.
  Arena — the part of the screen the Turtles are

displayed in.
  Log — a part of the screen to which you can send

text.
  TurtleController — a class that describes how the

program should react to user input.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 15

Some Commands that Send Messages

Basic commands:
  send a message to an object.

  Example:
crush.setPosition(50, 20) ;

  Sends a request to an object named “crush” to change its
position to (50, 20).

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 16

Some Commands that Send Messages
Exercise:

  Find the “TurtleController” class.
  Find the “start” method. It looks like this

public void start() {
}

  Add the “message send command” crush.setPosition(50, 20) ;
so that it looks like this.

public void start() {
 crush.setPosition(50, 20) ;
}

  Save: Save the TurtleController class..
  Run: click on the “Run” on the “Run” menu.
  Try clicking on the “start” button. What happens.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 17

Some Commands that Send Messages

Some messages result in an answer.
  send a message to an object and record the answer

  Example:
double x = crush.getPositionX() ;

  sends a “getPositionX” message to the turtle and names
the answer “x”.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 18

Some Commands that Send Messages
Exercise
  Change the “start” method to look like this

public void start() {
 crush.setPosition(20, 50) ;
 double x = crush.getPositionX() ;
 double y = crush.getPositionY() ;
 log.println(x) ;
 log.println(y) ;
 }

  The command “double x = crush.getPositionX() ;” sends a
“getPositionX” message to the turtle, naming the answer “x”.

  Try running Turtleworld now.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 19

Things to Know in Turtle-World
  What is a pixel?

  It is the smallest possible block on the computer’s screen.

  What do we mean by “speed”?
  We mean how fast the turtle is going in pixels per second.

  What is “rate of change of speed”?
  Similar to acceleration, it means how fast the turtle is

speeding up, in pixels per second per second.

  What is “spin”?
  Spin is how fast the turtle is spinning in degrees per second.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 20

Things to Know in Turtle-World

  What is meant by position?
  The position of a turtle is

the location of the turtle in
comparison to the top left-
hand corner

  What is meant by orientation?
  The orientation of the turtle is

the way it is facing compared to
the right side of the arena. Like
a compass, the measurement
goes clock-wise

y

(40,5)
(0,0)

(5,30)

x

0, 360, -360

45
90, -270 etc 135

180, -180

225
270

315

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 21

Sending messages to the turtle

  Messages (see companion document for full list).
  crush.setSpeed(s) ;

  Exercise: make the turtle start
  Remove the commands you earlier added to “start” so that

it looks like this again
public void start() {

}
  Change the “start” method so that it tells the turtle to move

at a speed of 50 pixels per second.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 22

Sending messages to the turtle (cont.)

  Save: Save the TurtleController class..
  Run: click on the “Run” on the “Run” menu.
  Try clicking on the “start” button.
  What happens?
  Try clicking on the “stop” button.
  What happens?
  Close the Turtle World window.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 23

Sending messages to the turtle (cont.)

  Making the turtle stop
  Find the “method” that the TurtleController executes in

reaction to to the “stop” button being clicked.
  Change this “method” to make the turtle stop.

  Making the turtle go slower/faster or spin at start
  How would you change the “start method” so that the turtle

goes slower or faster? So that the turtle spins?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 24

Sequences of commands
  Commands are followed in the order they appear in

a method.
  Example – What happens when you try this?

crush.setSpeed(100) ;
crush.setSpin(90) ;

  Exercise: Make the turtle go in a circle.
  Modify the “circle” method to make the turtle travel in a

circle.

  Exercise: Change around the order that commands
are given
  Does the order of the commands matter here? In general?

Executed first

Executed second

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 25

Sequences of commands

  The messages to the turtle
  crush.penDown() ;
  crush.penUp() ;

 control whether the turtle leaves a trace behind it of where it
has been.

  Exercise: Modify the “circle” method to draw a circle.
  Exercise: How would you modify the “circle” method to only

draw part of a circle?
  Exercise: Modify the “mySequence” method to do four

different commands (see the companion document for ideas)
and then change the order of them to see if it makes a
difference.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 26

Getting information from the turtle

  The commands
  double x = crush.getPositionX() ;
  double y = crush.getPositionY() ;
  double s = crush.getSpeed() ;
  double alpha = crush.getOrientation() ;
  double vx = crush.getVelocityX() ;
  double vy = crush.getVelocityY() ;
  double a = crush.rateOfChangeOfSpeed() ;
  double omega = crush.spin() ;

 obtain information about the turtle and give that value a name.
(“double” is short for “double precision number”, i.e. these
names stand for numbers.)

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 27

Getting information from the turtle

  Exercise: Turning left.
  Modify the “left” method to turn the turtle left by 30 degrees.
  Hint: first give a name to the current orientation, then use a

“setOrientation” message to turn the turtle. Orientations
are in degrees.

  Another hint. You can add two numbers using the +
operator. For example: X+Y where X and Y are either
numbers or names that stand for numbers.

  Question: Does the order of the commands matter?

  Exercise: Turning right.
  Do the same as the exercise above for the “right” method

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 28

Making choices

  Choose a sequence of commands depending on
whether a condition is true or not!
if (condition) {

 a sequence of commands
} else {

another sequence of commands
}

  Many real-life examples of making choices, can you
think of any?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 29

Making choices

  Example: Speed up the turtle, but not faster than 100
public void faster() {

 double s = crush.getSpeed() ;
 if (s + 5 > 100) {
 crush.setSpeed(100) ;
 } else {
 crush.setSpeed(s + 5) ;
 }

}
  Exercise: Modify “slower” so that the speed is not set to less

than 0.
  Exercise: Modify “mySequence” so that if the turtle is facing

left it turns to the right and vice-versa.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 30

Pausing

  The basic command
pause(t) ;

 causes the TurtleController to wait for t seconds before
executing the next command.

  Exercise: Modify the “start” method so that when the button is
pressed, the turtle travels for 5 seconds and then stops (we
will change it back later!).

  Exercise: Draw a square.
  Modify the “square” method so that the turtle draws a square by

traveling right for 1 second, turning right, traveling down for 1
second, turning right, traveling left for 1 second, turning right,
traveling up for one second and then stopping.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 31

Repetition: Do it some number of times.

  If some commands should be repeated a fixed
number of times:
for (int i = 0; i < N; i++) {

 sequence of commands
}

  Can you think of some real-world examples of where
an iteration loop with a given number of repeats
(also called a “for” loop) is used?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 32

“For” loop example

  Example: Another way to draw a square.
public void hexagon() {

 int N = 4 ;
 crush.penDown() ;
 crush.setSpeed(100) ;
 for (int i = 0 ; i < N ; i++) {
 pause(1) ;
 double alpha = crush.getOrientation() ;
 crush.setOrientation(alpha + 90) ;
 }
 crush.setSpeed(0) ;

}

Command sequence
repeated 4 times.

int stands for
“integer number”

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 33

“For” loop exercises.

  Modify “hexagon” to create an 6 sided polygon.

  Modify your “sequence” method
  Put a “for” loop around your sequence and make it go for

five iterations.
  Add the command
!crush.penDown() ;

 right before it.
  What types of drawings do you come up with?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 34

Repetition: Repeat while needed

  Repeat something as long as some condition is true!
while (condition) {

 sequence of commands
}

  What real-life examples can you come up with
where something is repeated as long as something
else is true (also called a “while” loop because while
something is true we do this)?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 35

“While loop” example

  Make a new button with this method:
public void changeColor() {
 while(crush.getSpeed() > 0) {
 crush.setColor(Color.blue) ;
 pause(0.5) ;
 crush.setColor(Color.red) ;
 pause(0.5) ;
 crush.setColor(Color.black) ;
 pause(0.5) ;
 }
}

  Try starting the turtle. Then click changeColor. When does the
turtle stop changing color.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 36

Combining Commands

There are a number of ways to combine simpler
commands to make more complex commands

  Sequential — do one thing after another.
  In Java, put one command after another.

  Choice — do one command or another depending
on a condition
  In Java, use if-else

  Repetition — do the same things more than once
  In Java, use for-loops or while-loops

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 37

“While” loop exercises

  Change the “for” loop in your “sequence” method to
a “while” loop that keeps going until the speed is
zero (you may have to use “slower” while your turtle
is running through the sequence to slow it down).

  Change this again so that your sequence keeps
going until the speed is either over 100 or under
zero (again, you may have to use the “faster” and
“slower” buttons).

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 38

“While” loop exercises (continued)

  How would you keep your sequence of commands
going “forever”, until you hit “stop”?

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 39

New methods

  A “method” is a sequence of commands with a
name.

  Define a new method in a class
public void name () !
{!
!sequence of commands!
}!

  The method name becomes a new message that
the objects of the class understand.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 40

New Method Exercise

  Create new method octagon
  Hint: copy, paste and modify the “body” of the hexagon

method.
  Add octagon to the list of methods activated by

buttons
  Add the word “octagon” to the list named “methodNames”

near the start of the TurtleController.java file.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 41

  Parameters allow variations on a single method.
  Example: When we use the “pause” command we

put a number in the brackets that tells the method
how long to pause for, it looks like

 pause(t);

  t is a parameter. It is a name that stands for different
values at different times. E.g. in the command
pause(0.5) ;

 t stands for 0.5.

Parameters

Parameter

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 42

Parameters exercise

  Try creating a method named “polygon” with a
parameter N.

  Then modify square, hexagon, and octagon to use
it.

  Parameters and methods allow common sequences
of commands to be programmed once and used
over again.
  This is called “procedural abstraction”.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 43

More objects

  Declare that our system contains a new object
 private ClassName objectName = new ClassName(…);!

  Example:
  private Turtle squirt = new Turtle(Color.RED) ;

  Exercise: add a new turtle (call it what you like – I called mine
“squirt”)
  Find the declaration of “crush” in the TurtleController class.
  Add a declaration for “squirt” (as above)
  Find where crush is added to the arena
  add a command to add the “squirt” to the “arena”.
  Add some buttons to control “squirt”

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 44

What is Programming?
  An Art or Craft?

  Is writing a program like writing a book?
  Is it all about effective communication?

  A Mathematical Science?
  Logic is the mathematics of relationships.
  Programming is the mathematics of relationships evolving

through time.

  Engineering?
  The analysis and design of artifacts.
  Programs are artifacts that must be designed and may be

analyzed.
  Perhaps it is all three.

© 2004--09 T. S. Norvell, D. K. Peters, L. Hogan Junior High Enrichment Programming Intro. Slide 45

Interesting problems in software
engineering.
  How to solve problems with minimum execution time
  How to solve problems with minimum space
  How to get a large number of people to cooperate

effectively to create large programs
  How to specify what a program should do
  How to avoid programming mistakes (bugs)
  How to find any remaining programming mistakes
  How to know whether a program does what it should

46

The end

