Title Page

Contents

The JavaCC FAQ

Maintained by Theodore S. Norvell
Computer and Electrical Engineering
Memorial University of Newfoundland

Email: theo at engr.mun.ca

Typeset on June 19, 2007.

Title Page

Contents

Contents

1 General Information on JavaCC and Parsing

1.1 Recent changes tothe FAQ
1.2 What is JavaCC?
1.3 Could you explain that in more detail?
1.4 What does JavaCC not do?
1.5 What can JavaCC be used for?
1.6 Where can I get JavaCC?
1.7 What legal restrictions are there on JavaCC?
1.8 Is the source code for JavaCC publicly available?
1.9 Is there any documentation?
1.10 Are there books, articles, or tutorials on JavaCC?
1.11 Are there publicly available grammars?
1.12 Are there books or tutorials on parsing theory?
1.13 Is there a newsgroup or mailing list?
1.14 Should I send my question to the newsgroup or mailing list?

1.15 Who wrote JavaCC and who maintains it?

2 Common Issues

2.1 What files does JavaCC produce?
2.2 Can I modify the generated files?

© © 0o 0o g OO

2.3
24
2.5
2.6

The
3.1
3.2
3.3

3.4
3.5

3.6

3.7
3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15

3.16
3.17
3.18
3.19

I changed option x; why am I having trouble? 17

How do I put the generated classes in a package? 17
How do I use JavaCC with ANT? 17
Is there an Eclipse Plug-in for JavaCC? 19
Token Manager 20
What is a token manager? 20
How do I read from a string instead of a file? 21
What if more than one regular expression matches a prefix of the

remaining input? 22
What if the chosen regular expression matches more than one prefix? 23

What if no regular expression matches a prefix of the remaining

input? ... e 24
How do I make a character sequence match more than one token

kKind? 24
How do I match any character? 26
Should T use (7[])+ to match an arbitrarily long sequence of char-

acters? . . . L e 26
How do I match exactly n repetitions of a regular expression? . . 28
What are TOKEN, SKIP, and SPECIAL_TOKEN?. 28
What are lexical states all about? 29
Can the parser force a switch to a new lexical state? 32
Is there a way to make SwitchTo safer? 32
What is MORE? 33
Why do the example Java and C++ token managers report an

error when the last line of a file is a single line comment? 35
What is a lexical action? 36
How do I tokenize nested comments? 36
What is a common token action? 38
How do I throw a ParseException instead of a TokenMgrError? . 39

The Parser and Lookahead

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8

4.9

4.10
4.11
4.12

4.13
4.14
4.15
4.16

4.17

4.18
4.19

Where should I draw the line between lexical analysis and parsing?
What is recursive descent parsing?
What is left-recursion and why can’t [use it?
How do I match an empty sequence of tokens?
What is “lookahead”? oL
I get a message saying “Warning: Choice Conflict ... ”7; what should
[do? . . . o
[added a LOOKAHEAD specification and the warning went away;
does that mean I fixed the problem?
Are nested syntactic lookahead specifications evaluated during syn-
tactic lookahead?
Are parameters passed during syntactic lookahead?
Are semantic actions executed during syntactic lookahead?
[s semantic lookahead evaluated during syntactic lookahead? . . .
Can local variables (including parameters) be used in semantic

How does JavaCC differ from standard LL(1) parsing?
How do I communicate from the parser to the token manager? . .
How do I communicate from the token manager to the parser? . .
What does it mean to put a regular expression within a BNF pro-
duction?
When should regular expressions be put directly into a BNF pro-
duction?

39
40

41
41
41
42
44
44

45

50

o1
o4
o4
o4

o4
95
55
o7

57
59

61
63

4.20 There’s an error in the input, so why doesn’t my parser throw a

ParseException?o Lo 66

5 Semantic Actions 67

5.1 I've written/found a parser, but it doesn’t do anything? 67

5.2 How do I capture and traverse a sequence of tokens? 67

5.3 Why does my parser use so much space? 70

6 JJTree and JTB 72

6.1 What are JJTree and JTB? 72

6.2 Wherecan I find JJTree?, 72

6.3 WherecanI find JTB? 73

7 Applications of JavaCC 74

7.1 Where can I find a parser for 7 74

7.2 How do I parse arithmetic expressions? 74
7.3 TI'm writing a programming language interpreter; how do I deal

with loops? 75

8 Comparing JavaCC with other tools 76
8.1 Since LL(1) C LALR(1), wouldn’t a tool based on LALR parsing

be better? 76

8.2 How does JavaCC compare with Lex and Flex? 7

8.3 How does JavaCC compare with other Yacc and Bison? 78

Acknowledgments: Your maintainer would like to thank the following for
help with the FAQ: Ken Beesley, Paul Cager, Tom Copeland, Tom Davies, Brian
Goetz, John Kristian, Tony LaPaso, Eric Nickell, Andreas Papasalouros, Phil Ro-
bare, David Rosenstrauch, Sreeni Viswanadha, and Michael Welle. Much of the
material is based on documentation by Sriram Sankar and Sreeni Viswanadha.
This FAQ is prepared and published with the help of Scientific Workplace, PDF-

TeX, pdfscreen, TTH, Visio and other software, and uses data formats LaTeX,
TeX, HTML, PDF, and PNG; I'd like to thank the creators of these tools and
formats. Above all, I'd like to thank the creators of JavaCC, JJTree, and JTB

for creating such useful tools.

The latest copy of this FAQ can be found at The JavaCC FAQ'.
In citing or linking to this FAQ, please use the following URI:

http://www.engr.mun.ca/ theo/JavaCC-FAQ

Thttp: //www.engr.mun.ca/~theo/JavaCC-FAQ/

Chapter 1

General Information on JavaCC
and Parsing

“DRAGONS DREAD
GO BACK TO BED!!”
Sheree Fitch, Sleeping Dragons All Around.

1.1. Recent changes to the FAQ

e Added reference to Tom Copeland’s book Generating Parsers with JavaCC.

1.2. What is JavaCC?

JavaCC stands for “the Java Compiler Compiler”; it is a parser generator and
lexical analyzer generator. JavaCC will read a description of a language and
generate code, written in Java, that will read and analyze that language. JavaCC

is particularly useful when you have to write code to deal with an input language
has a complex structure; in that case, hand-crafting an input module without the
help of a parser generator can be a difficult job.

This technology originated to make programming language implementation
easier —hence the term “compiler compiler”— but make no mistake that JavaCC
is of use only to programming language implementors.

1.3. Could you explain that in more detail?

Figures 1.1 and 1.2 show the relationship between a JavaCC generated lexical
analyzer (called a “token manager” in JavaCC parlance) and a JavaCC generated
parser. The figures show C as the input language, but JavaCC can handle any
language —and not only programming languages— if you can describe the rules
of the language to JavaCC.

The token manager reads in a sequence of characters and produces a sequence
of objects called “tokens”. The rules used to break the sequence of characters
into a sequence of tokens obviously depend on the language; they are supplied by
the programmer as a collection of “regular expressions”.

The parser consumes the sequence of tokens, analyses its structure, and pro-
duces Well what the parser produces is up to you; JavaCC is completely
flexible in this regard!. The figure shows an “abstract syntax tree”, but you
might want to produce, say, a number (if you are writing a calculator), a file of
assembly language (if you were writing a one-pass compiler), a modified sequence
of characters (if you were writing a text processing application), and so on. The
programmer supplies a collection of “Extended BNF production rules”; JavaCC
uses these productions to generate the parser as a Java class. These production

! Another way of looking at it is that JavaCC is of little help in this regard. However, if you
want to produce trees there are two tools, based on JavaCC, that are less flexible and more
helpful, these are JJTree and JTB. See Chapter 6 .

rules can be annotated with snippets of Java code, which is how the programmer
tells the parser what to produce.

1.4. What does JavaCC not do?

JavaCC does not automate the building of trees (or any other specific parser
output). There are at least two tree building tools JJTree and JTB (see Chapter
6.) based on JavaCC, and building trees “by hand”with a JavaCC based parser
is easy.

JavaCC does not build symbol-tables, although if you want a symbol table for
a language, then a JavaCC based parser may provide a good framework.

JavaCC does not generate output languages. However once you have a tree,
it is easy to generate string output from it.

1.5. What can JavaCC be used for?

JavaCC has been used to create parsers for: RTF, Visual Basic, Python, Rational
Rose mdl files, XML, XML DTDs, HTML, C, C++, Java, JavaScript, Oberon,
SQL, VHDL, VRML, ASN1, email headers, and lots of proprietary languages. It
also gets used for configuration file readers, calculators, and on and on.

1.6. Where can I get JavaCC?

JavaCC is available from java.net” as a free download.

2http:/ /javacc.dev.java.net/

1.7. What legal restrictions are there on JavaCC?

There are essentially no restrictions on the use of JavaCC. In particular you may
use the Java files that JavaCC produces in any way, including incorporating them
into a product that you sell.

JavaCC is freely redistributable under the its open source licence. See the
licence for details.

1.8. 1Isthe source code for JavaCC publicly avail-
able?

Yes. As of June 2003, JavaCC is open source. The source code can be found at
java.net?.

1.9. Is there any documentation?

Yes. It is available online at java.net*.

The on-line documentation is currently a bit out of date. You should also read
the release notes that come with the JavaCC' download.

The documentation is rather terse and is much easier to read if you already
know a bit about parsing theory. Nevertheless, the documentation is an indis-
pensable resource that is in no way superceded by this FAQ.

It used to be possible to download the documentation in a big ZIP file. At
the moment your maintainer does not know where the documentation can be
downloaded from, but you can currently view it on-line.

3http:/ /javacc.dev.java.net/
4https://javacc.dev.java.net /doc/docindex.html

1.10. Are there books, articles, or tutorials on

JavaCC?

Book:

e Tom Copeland, Generating Parsers with JavaCC®, Centennial Books, Alexan-
dria, VA. 2007. ISBN 0-9762214-3-8.

Tutorials and articles:

e There are mini-tutorials in the documentation. (See Question 1.9, “Is there
any documentation?”.)

Viswanathan Kodaganallur, ‘Incorporating Language Processing into Java
Applications: A JavaCC Tutorial.” IEEE Software, 21(4): 70-77 (2004).

A draft tutorial by Theodore Norvell®

A lexer tutorial by Sreeni Viswanadha.”

A tutorial that involves JJTree.®

A related but different tutorial that involves JJTree.”

A short tutorial on JJTree by Jocelyn Paine.'’

A couple of articles have been published in JavaWorld. !

Shttp://generatingparserswithjavacc.com/.
Shttp://www.engr.mun.ca/~theo/JavaCC-Tutorial/.
"http://www.cs.albany.edu/~sreeni/JavaCC /lexertips.html.
8http://www-106.ibm.com/developerworks/xml/library /x-javaccl/.
9http:/ /www.fatdog.com/Extreme.html.

DOhttp: //www.j-paine.org/jjtree.html.

1A http://www.javaworld.com /javaworld /jw-12-1996 /jw-12-jack.html and

http://www.javaworld.com/javaworld /jw-12-2000/jw-1229-cooltools.html.

1.11. Are there publicly available grammars?

Yes. There are two repositories of publicly available grammars. They are at
Dongwon Lee’s JavaCC Grammar Repository'? and the grammar repository at
Java.net'?.

1.12. Are there books or tutorials on parsing
theory?

Yes many. Most text-books on compiler technology contain more than enough
background on parsing theory. Here are some suggestions

e Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley, 1985.

e Charles N. Fischer and Richard J. Leblanc, Jr., Crafting a Compiler With
C, Addison-Wesley, 1991.

1.13. Is there a newsgroup or mailing list?

comp.compilers.tools.javacc is a usenet newsgroup for discussing the JavaCC and
related technologies, like JJTree and JTB.

There is also a mail-list at java.net'*. To sign up for this list you must first
register as a java.net user, second join the JavaCC project, and then request to
be added to the “users” mail-list.

The mailing list and comp.compilers.tools.javacc are not currently gatewayed.

2http:/ /www.cobase.cs.ucla.edu/pub/javacc/
13https: //javacc.dev.java.net /servlets /Project DocumentList ?folderID=110
Mhttp://javacc.dev.java.net/

1.14. Should I send my question to the news-
group or mailing list?

Yes, but only if your question relates in some way to JavaCC, JJTree, or JTB.

The newsgroup and mailing list are not suitable fora for discussing the Java
programming language or javac, which is Sun’s Java compiler, or any other topic
that does not relate directly to the Java Compiler Compiler.

Questions on parsing theory or parser generation in general might be better
addressed to comp.compilers.

Questions directly answered in the FAQ need not be asked again in the new-
group or mailing list.

1.15. Who wrote JavaCC and who maintains it?

JavaCC was created by Sreeni Viswanadha and Sriram Sankar when they worked
for Sun. They are continuing to improve it.

Since JavaCC is now open source, it is being maintained by its developer
community. Luckly this includes the original authors.

amain’{y" { nwre''turn oy }

O O)

Token Manager

[\

O I

EOF

| LPAR |[RPAR LB{R rthu"r'n OCT 11 S0 RI?R
m;n ||}|| myen) ||D|| ":" uyn

{
WY ”© Tokens headed to the parser @

INT
int

Figure 1.1: The token manager converts a sequence of characters to a sequence
of Token objects.

N LPAR RPAR |[LER riwn OCT [SC RBR
S o
{ :
WY H@ Tokens from the token manager Q)
=
Parser
function defn
rtn type
rnbpe
int name body
aram list | compound stmnt |
“main” .

return with value

expression

int const
0

Figure 1.2: The parser analyzes the sequence of tokens.

Chapter 2

Common Issues

2.1. What files does JavaCC produce?

JavaCC is a program generator. It reads a .jj file and, if that .jj file is error free,
produces a number of Java source files. With the default options, it generates the
following files:

e Boiler-plate files

— SimpleCharStream. java — represent the stream of input characters.
— Token. java — represents a single input token
— TokenMgrError. java — an error thrown from the token manager.

— ParseException. java — an exception indicating that the input did
not conform to the parser’s grammar.

e Custom files (XXX is whatever name you choose).

— XXX .java — the parser class

— XXXTokenManager. java — the token manager class.

— XXXConstants. java — an interface associating token classes with
symbolic names.

If you use the option JAVA_UNICODE_ESCAPE then SimpleCharStream. java
will not be produced, but rather JavaCharStream.java. (Prior to version 2.1,
one of four possible files was generated: ASCII_CharStream. java ASCII_UCodeESC_CharStream.
UCode_CharStream. java, or UCode _UCodeESC_CharStream. java).

If you use the option USER_CHAR_STREAM, then CharStream. java (an in-
terface) will be produced instead of the class SimpleCharStream. java. Similarly
the option USER_.TOKEN_MANAGER will cause the generation of an interface
TokenManager. java, rather than a concrete token manager.

The boiler-plate files will only be produced if they don’t already exist. There
are two important consequences: First, you should delete them prior to running
JavaCC, if you make any changes that might require changes to these files. (See
Question 2.3, “I changed option x; why am I having trouble?”.) Second, if you
really want to, you can modify these files and be sure that JavaCC won’t overwrite
them. (See Question 2.2, “Can I modify the generated files?”.)

2.2. Can I modify the generated files?

Modifying any generated files should be generally avoided, since some day you
will likely want to regenerate them and then you’ll have to re-modify them.
That said, modifying the Token. java, ParserException. java and TokenManagerError. ja

files is a fairly safe thing to do as the contents of these files do not depend on

the options, or the contents of the specification file, other than the package decla-

ration. Modifying the SimpleCharStream.java (or JavaCharStream. java) file

should not be done until you are certain of your options, especially the STATIC

and JAVA_UNICODE_ESCAPE options.

The custom files (XXX . java, XXXTokenManager . java, and XXXConstants. java)
are produced every time you run JavaCC. Modifying any of the custom files is
generally a very bad idea, as you'll have to modify them again after any change
to the specification. Some people have written scripts (in, say, Perl) to do the
modifications for them. I would regard this as a very last resort.

2.3. I changed option z; why am I having trou-
ble?

Try deleting all files generated by JavaCC (see Question 2.1, “ What files does
JavaCC produce?”) and then rerunning JavaCC. This issue usually comes up
when the STATIC option is changed; JavaCC needs to generate new files, but it
will not generate boiler-plate files unless they aren’t there already.

2.4. How do I put the generated classes in a
package?

Put a package declaration right after the PARSER_BEGIN(XXX) declaration in
the .jj file.

2.5. How do I use JavaCC with ANT?

First, of course, download and install ANT from the Apache project’s website (go
to http://jakarta.apache.org/builds/jakarta-ant/release/ and choose the largest
release number). This comes with a prebuilt JavaCC step documented under the
“Optional Tasks” category.

The ANT task only invokes JavaCC if the grammar file is newer than the
generated Java files. The ANT task assumes that the Java class name of the
generated parser is the same as the name of the grammar file, ignoring the .jj. If
this is not the case, the javacc task will still work, but it will always generate the
output files.

Next, create a build.xml file which calls the step named javacc. Note that
capitalization is important and that the ANT documentation for this step is titled
JavaCC although the step name is javacc (the example in the documentation is
right). I assume for this example that you have installed JavaCC in /usr/local
on a Unix or GNU Linux box. A simple step will look like:

<Javacc
target="%${sampleDir} /SimpleExamples/Simplel.jj"
outputdirectory="${sampleDir} /SimpleExamples/java"
javacchome="/usr/local /javacc2.1"

/>

ANT makes it easy to put the generated files in a separate directory. The
javacchome attribute defines where you installed JavaCC.
This will need to be followed by a javac step to compile the generated files.

<javac

srcdir="${sampleDir} /SimpleLevels/java"
destdir="${sampleDir} /SimpleLevels/classes” />

Before running ANT you must add the JavaCC .zip file to your class path.
The JavaCC step does not take a <classpath> modifier, so adding it to the global
classpath is the only way to get this information into the step.

CLASSPATH=$CLASSPATH: /usr/local /javacc2.1/bin/lib/JavaCC.zip
export CLASSPATH

Now all you have to do is issue the command “ant”
A complete build.xml file is available at http://www.engr.mun.ca/~theo/
JavaCC-FAQ/build.xml.

2.6. Is there an Eclipse Plug-in for JavaCC?

Yes. See http://perso.wanadoo.fr/eclipse_javacc/.

Chapter 3

The Token Manager

3.1. What is a token manager?

In conventional compiling terms, a token manager is a lexical analyzer. If that
is Greek to you, here is an explanation. The token manager analyzes the input
stream of characters breaking it up into chunks called tokens and assigning each
token a “token kind”. For example suppose the input is a C file

int main() {

/*a short program */
return 0 ; }

Then the token manager might break this into chunks as follows:

“int”’ (13 77’ Ctmainﬂ’ 14 (77, (6)77’ (43 77, (L{”’ L(\n”, (43 77, CL/*a ShOI't program

*/7, ...

White space and comments are typically discarded, so the chunks are then

“int” , ((main” , 44 (77 , “) 7 , (({77 , ((return” , ((077 , 13 ; 7 , 44}77

Each chunk of text is classified as one of a finite set of “token kinds”.! For
example the chunks above could be classified as, respectively,

KWINT, ID, LPAR, RPAR, LBRACE, KWRETURN, OCTALCONST, SEMICOLON,
RBRACE

Each chunk of text is represented by an object of class Token, each with the
following attributes:

e kind the token kind encoded as an int,
e .image the chunk of input text as a string,

and a few others.

This sequence of Token objects is produced based on regular expressions ap-
pearing in the .jj file.

The sequence is usually sent on to a parser object for further processing.

3.2. How do I read from a string instead of a
file?

Here is one way

java.io.StringReader sr = new java.io.StringReader(str);
java.io.Reader r = new java.io.BufferedReader(sr);
XXX parser = new XXX(r);

! JavaCC’s terminology here is a bit unusual. The conventional name for what JavaCC calls
a “token kind” is “terminal” and the set of all token kinds is the “alphabet” of the EBNF
grammar.

3.3. What if more than one regular expression
matches a prefix of the remaining input?

First a definition: If a sequence x can be constructed by catenating two other
sequences y and z, i.e., z = yz, then y is called a “prefix” of x. (Either y or z can
be empty squences.)

There are three golden rules for picking which regular expression to use to
identify the next token:

1. The regular expression must describe a prefix of the remaining input stream.

2. If more than one regular expression describes a prefix, then a regular ex-
pression that describes the longest prefix of the input stream is used. (This
is called the “maximal munch rule”.)

3. If more than one regular expression describes the longest possible prefix,
then the regular expression that comes first in the .jj file is used.

Example: For example, suppose you are parsing Java, C, or C++. The
following three regular expression productions might appear in the .jj file

TOKEN : { <PLUS : “+">}
TOKEN : { <ASSIGN : “=">}
TOKEN : { <PLASSIGN : “+=" >}

Suppose the remaining input stream starts with

“+=1, ‘”77

b

Rule 1 rules out the second production. Rule 2 says that the third production
is preferred over the first. The order of the productions has no effect on this
example.

Example: Sticking with Java, C, or C++, suppose you have regular expres-
sion productions

TOKEN : { <KWINT : “int">}
TOKEN : { <IDENT : [“a"-"z","A"-"Z", “"] (["a"-"2","A"-"Z","0"-"9",""])*
>}

Suppose the remaining input steams starts with

“integer i; ...” ,
then the second production would be preferred by the maximal munch rule (rule
2). But if the remaining input stream starts with

“int i; ...V ,
then the maximal munch rule is no help, since both rules match a prefix of length
3. In this case the KWINT production is preferred (by rule 3) because it comes
first in the .jj file.

3.4. What if the chosen regular expression matches

more than one prefix?

Then the longest prefix is used. That is, the token’s image will be the longest
prefix of the input that matches the chosen regular expression.

3.5. What if no regular expression matches a
prefix of the remaining input?

If the remaining input is empty, an EOF token is generated. Otherwise, a Token-
MgrError is thrown.

3.6. How do I make a character sequence match
more than one token kind?
A common misapprehension of beginners is that the token manager will make

its decisions based on what the parser expects. They write a couple of token
definitions, for example

TOKEN : { <A: X'
TOKEN : { <B:"y"

uyn > }
uzn > }

(1))

and expect the token manager to interpret “y” as an A if the parser “expects”
an A and as a B if the parser “expects” a B. This is an interesting idea, but it
isn’t how JavaCC works?. As discussed in Question 3.3, “ What if more than
one regular expression matches a prefix of the remaining input?”, the first match
wins.

So what do you do. Let’s consider the a more general situation where a and
b are regular expressions. And we have token definitions

TOKEN : { <A:a >}

2Tt’s also an idea that leaves some questions open. What should the token manager do if the
parser would accept either an A or a B? How do we write a parser for a language with reserved
words?

TOKEN: { <B: b >}

Suppose that a describes a set A and b describes a set B. Then (ignoring
other regular expressions) A matches A but B matches B — A.

You want to the parser to be able to request a member of set B. If A is a
subset of B there is a simple solution; create a nonterminal

Token b() : {Token t ; }{ (t=<A> | t=) {return t;} }

Now use b() instead of when you want a token in the set B.
If A is not a subset of B, there is more work to do. Create regular expressions
a’, b, and ¢ matching sets A’, B’, C’ such that

A=C'UA

and
B=C'U(B - A)

Now you can write the following productions

TOKEN : { <C: (¢ >}

TOKEN : { <A:d >

TOKEN : { <B: ¥/ >}

Token a() : {Token t; } { (t=<C> | t=<A>) {return t;} }
Token b() : {Token t ; } { (t=<C> | t=) {return t;} }

Use a() when you need a member of set A and b() when you need a member of
set B. Applied to the motivating example, we have

TOKEN : { <C: " >}
TOKEN : { <A: X" >}

TOKEN : { <B: "2’ >}
Token a() : {Token t; } { (t=<C> | t=<A>) {return t;} }
Token b() : {Token t ; } { (t=<C> | t=) {return t;} }

Of course this idea can be generalized to any number of overlapping sets.

There are two other approaches that might also be tried: One involves lexical
states and the other involves semantic actions. All three approaches are discussed
in Question 4.19, “How do I deal with keywords that aren’t reserved?”, which
considers a special case of the problem discussed in this question.

3.7. How do I match any character?

Use 7[] .

3.8. Should I use (7[])+ to match an arbitrarily
long sequence of characters?

You might be tempted to use (7[])+. This will match all characters up to the
end of the file (see Question 3.4, “ What if the chosen regular expression matches
a prefix in more than one way?”), if there are any, which is likely not what you
want. Usually what you really want is to match all characters up to either the
end of the file or until some stopping point. Consider, for example, a scripting
language in which scripts are embedded in an otherwise uninterpreted text file set
off by “<<” and “>>" tokens. Between the start of the file or a “>>" and the
next “<<” or the end of file we need to match an arbitrarily long sequence that
does not contain two “<” characters in a row. We could use a regular expression

(~ (¢<77] ’ (£<77 ~[((<77])+

Of course you don’t want to match this regular expression within a script and so
we would use lexical states to separate tokenizing within scripts from tokenizing
outside of scripts (see Question 3.11, “What are lexical states all about?”).

A simpler method uses ~[] and moves the repetition up to the grammar level.
Note that the TEXT tokens are all exactly one character long.

<DEFAULT> TOKEN : { <STARTSCRIPT : “<<" > : SCRIPT }
<DEFAULT> TOKEN : { < TEXT : 7[] > }

<SCRIPT> TOKEN : { <ENDSCRIPT : “>>" > : DEFAULT }
<SCRIPT> ... other TOKEN and SKIP productions for the SCRIPT state

Then the grammar is, in part,

void start() : {}

{
text()
((<STARTSCRIPT> script() <ENDSCRIPT>)* text())
<EOF>

}

void text() : {} { (KTEXT>)* }

3.9. How do I match exactly n repetitions of a
regular expression?

If X is the regular expression and n is an integer constant, write

(X){n}

You can also give a lower and upper bound on the number of repetitions:

(X){0, u}

This syntax applies only to the tokenizer, it can’t be used for parsing.

Note that this syntax is implemented essentially as a macro, so (X){3} is
implemented the same as (X)(X)(X) would be. Thus you should use it with
discretion, aware that it can lead to a big generated tokenizer, if used without
care.

3.10. What are TOKEN, SKIP, and SPECIAL_ TOKEN?

Regular expression productions are classified as one of four kinds:

e TOKEN means that when the production is applied, a Token object should
be created and passed to the parser.

e SKIP means that when the production is applied, no Token object should
be constructed.

e SPECIAL_TOKEN means that when the production is applied a Token
object should be created but it should not be passed to the parser. Each
of these “special tokens” can be accessed from the next Token produced
(whether special or not), via its specialToken field.

e MORE is discussed in Question 3.14, “What is MORE?”.

3.11. What are lexical states all about?

Lexical states allow you to bring different sets of regular expression productions
in-to and out-of effect.

Suppose you wanted to write a JavaDoc processor. Most of Java is tokenized
according to regular ordinary Java rules. But between a “/**” and the next “x/”
a different set of rules applies in which keywords like “@param” must be recognized
and where newlines are significant. To solve this problem, we could use two lexical
states. One for regular Java tokenizing and one for tokenizing within JavaDoc
comments. We might use the following productions:

// When a /** is seen in the DEFAULT state, switch to the IN.JAVADOC_COMMENT
state
TOKEN : {

<STARTDOC : “/**" > : IN.JAVADOC_COMMENT }

// When @param is seen in the IN.JAVADOC_COMMENT state, it is a token.
// Stay in the same state.
<IN_JAVADOC_COMMENT> TOKEN : {

<PARAM : “@param” >}

// When a */ is seen in the IN.JAVADOC_COMMENT state, switch
// back to the DEFAULT state
<IN_JAVADOC_COMMENT> TOKEN : {

<ENDDOC: “*/">: DEFAULT }

Productions that are prefixed by <IN_JAVADOC_COMMENT > apply when the
lexical analyzer is in the IN.JAVADOC_COMMENT state. Productions that have

no such prefix apply in the DEFAULT state. It is possible to list any number of
states (comma separated) before a production. The special prefix <*> indicates
that the production can apply in all states.

Lexical states are also useful for avoiding complex regular expressions. Sup-
pose you want to skip C style comments. You could write a regular expression
production:

SKIP - { <*/* ("[™])* = ("[*/"] C[™*"]D* ™")* */">}

But how confident are you that this is right?® The following version uses a lexical
state called IN.COMMENT to make things much clearer:

// When a /* is seen in the DEFAULT state, skip it and switch to the IN.COMMENT
state
SKIP : {

“/%". IN.COMMENT }

3This example is quoted from
examples/JJTreeExamples/eg4.jjt

Your maintainer inspected it carefully before copying it into another .jjt file. As testing revealed,
it is not, however, correct. My first attempt to fix it also proved wrong. All of which shows
that even the experts can be befuddled by complex regular expressions, sometimes. Can you
spot the error?

I obtained the following regular expression by systematically converting a deterministic finite
automaton to a regular expression. I think it is correct.

A G B e G A I O B) A B A

// When any other character is seen in the IN.COMMENT state, skip it.
<IN_.COMMENT>SKIP : {

<>}

// When a */ is seen in the IN.COMMENT state, skip it and switch back to the
DEFAULT state
<IN_.COMMENT>SKIP : {

“* /" DEFAULT }

The previous example also illustrates a subtle behavioural difference between
using lexical states and performing the same task with a single, apparently equiv-
alent, regular expression. Consider tokenizing the C “statement”:

i= j/*p ;

Assuming that there are no occurrences of */ later in the file, this is an error
(since a comment starts, but doesn’t end) and should be diagnosed. If we use a
single, complex, regular expression to find comments, then the lexical error will
be missed and, in this example at least, a syntactically correct sequence of seven
tokens will be found. If we use the lexical states approach then the behaviour is
different, though again incorrect; the comment will be skipped; an EOF token will
be produced after the token for “j”#; no error will be reported. We can correct
the lexical states approach, however, with the use of MORE; see Question 3.14,

“What is MORE?”.

4The rule that an EOF token is produced at the end of the file applies regardless of the lexical
state.

3.12. Can the parser force a switch to a new
lexical state?

Yes, but it is very easy to create bugs by doing so. You can call the token
manager’s method SwitchTo from within a semantic action in the parser like this

{ token_source.SwitchTo(name_of_state) ; }

However, owing to look-ahead, the token manager may be well ahead of the
parser. Consider Figure 1.2; at any point in the parse, there are a number of
tokens on the conveyer belt, waiting to be used by the parser; technically the
conveyer belt is a queue of tokens held within the parser object. Any change of
state will take effect for the first token not yet in the queue. Syntactic look-ahead
usually means there is at least one token in the queue, but there may be many
more.

If you are going to force a state change from the parser be sure that, at that
point in the parsing, the token manager is a known and fixed number of tokens
ahead of the parser, and that you know what that number is.

If you ever feel tempted to call SwitchTo from the parser, stop and try to think
of an alternative method that is harder to get wrong.

3.13. Is there a way to make SwitchTo safer?

Brian Goetz submitted the following code to make sure that, when a SwitchTo is
done, any queued tokens are removed from the queue. There are three parts to
the solution:

e In the parser add a subroutine SetState to change the state. This subroutine
can be found at http://www.engr.mun.ca/~theo/JavaCC-FAQ/SetState.txt.

Use this subroutine to change states within semantic actions of the parser.

e In the token manager add a subroutine:

TOKEN_MGR_DECLS : {

// Required by SetState
void backup(int n) { input_stream.backup(n); }

e Use the USER_.CHAR_STREAM option and use BackupCharStream as the
CharStream class. BackupCharStream can be found at http://cvs.sourceforge.net/
cgi-bin/viewcvs.cgi/webmacro/webmacro/src/org/webmacro/parser /BackupCharStream.

3.14. What is MORE?

Regular expression productions are classified as one of four kinds:

e TOKEN, SKIP, and SPECIAL_TOKEN are discussed in Question 3.10,
“What are TOKEN, SKIP, and SPECIAL_TOKEN?".

e MORE.

MORE means that no token should be produced yet. Rather the characters
matched will form part of the next token to be recognized. MORE means that
there will be more to the token. After a sequence of one or more MORE produc-
tions have been applied, we must reach a production that is marked TOKEN,
SKIP, SPECIAL_TOKEN. The token produced (or not produced in the case of
SKIP) will contain the saved up characters from the preceding MORE produc-
tions. Note that if the end of the input is encountered when the token manager

is looking for more of a token, then a TokenMgrError is thrown. The assumption
made by JavaCC is that the EOF token should correspond exactly to the end of
the input, not to some characters leading up to the end of the input.

Let’s revisit and fix the comment example from Question 3.11, “What are
lexical states all about?”. The problem was that unterminated comments were
simply skipped rather than producing an error. We can correct this problem using
MORE productions to combine the entire comment into a single token.

// When a /* is seen in the DEFAULT state, skip it and switch to the IN.COMMENT
State
MORE : {

“/%'. IN.COMMENT }

// When any other character is seen in the IN.COMMENT state, skip it.
<IN.COMMENT>MORE : {

<"l >}

// When a */ is seen in the IN.COMMENT state, skip it and switch back to the
DEFAULT state
<IN_.COMMENT>SKIP : {

“x /" DEFAULT }

Suppose that a file ends with “/*a”. Then no token can be recognized, because
the end of file is found when the token manager only has a partly recognized token.
Instead a TokenMgrError will be thrown.

3.15. Why do the example Java and C++ token
managers report an error when the last
line of a file is a single line comment?

The file is likely missing a newline character (or the equivalent) at the end of the
last line.

These parsers use lexical states and MORE type regular expression produc-
tions to process single line comments thusly:

MORE : {
“//": IN.SINGLE_LINE_COMMENT }

<IN_SINGLE_LINE_.COMMENT >SPECIAL_TOKEN : {
<SINGLE_LINE_.COMMENT: “\n"|“\r"|“\r\n" >: DEFAULT }

<IN_SINGLE_LINE_.COMMENT>MORE : {
<[>}

Clearly if an EOF is encountered while the token manager is still looking for
more of the current token, there should be a TokenMgrError thrown.

Both the Java and the C++ standards agree with the example .jj files, but
some compilers are more liberal and do not insist on that final newline. If you
want the more liberal interpretation, try

SPECIAL_TOKEN : {
<SINGLE_LINE_.COMMENT: “//"("[*\n","\r"])* (*“\n"|*“\r"[*“\r\n")? >}

3.16. What is a lexical action?

Sometimes you want some piece of Java code to be executed immediately after
a token is matched. Lexical actions are placed immediately after the regular
expression in a regular expression production. For example:

TOKEN : {
<TAB : “\t"> { tabcount+=1; }

The Java statement { tabcount+=1; } will be executed after the production
is applied.

Keep in mind that the token manager may be significantly ahead of the parser
(owing to syntactic lookahead), so using lexical actions to communicate from
the token manager to the parser requires care. See Question 4.15, “How do I
communicate from the token manager to the parser?”for more on this.

3.17. How do I tokenize nested comments?

The answer lies in the fact that you can use SwitchTo in a lexical action (See
Question 3.12. “Can the parser force a switch to a new lexical state?” and Question
3.16. “ What is a lexical action?”). This technique might be useful for a number
of things, but the example that keeps coming up is nested comments. For example
consider a language where comment start with “(*” and end with “*)”, but can
be nested so that

(* Comments start with (* and end with *) and can nest. x*)

is a valid comment. When a “*)” is found within a comment, it may or may not
require us to switch out of the comment processing state.

Start by declaring a counter (declare it static, if you set the STATIC option to
true).

TOKEN_MGR_DECLS : {
int commentNestingDepth ;

}

When a “(*” is encounted in the DEFAULT state, set the counter to 1 and enter
the COMMENT state:

SKIP : { “(*" { commentNestingDepth =1 ; } : COMMENT }

When a “(*” is encounted in the COMMENT state, increment the counter:

<COMMENT> SKIP : { “(*" { commentNestingDepth +=1; } }

When a “x)” is encountered in the COMMENT state, either switch back to the
DEFAULT state or stay in the comment state:

<COMMENT> SKIP : { "*)" {

commentNestingDepth -= 1;
SwitchTo(commentNestingDepth==0 ? DEFAULT : COMMENT) ; } }

Finally a rule is needed to mop up all the other characters in the comment.

<COMMENT> SKIP : { < 7[] > }

For this problem only a counter was required. For more complex problems
one might use a stack of states. The lexer combined with a stack of states has

the expressive power of a deterministic push-down automata (DPDA); which is
to say you can solve a lot of problems with this technique.

3.18. What is a common token action?

A common token action is simply a subroutine that is called after each token is

matched. Note that this does not apply to “skipped tokens” nor to “special to-

kens”. See Question 3.10, “What are TOKEN, SKIP, and SPECIAL_TOKEN?”.
Use

options {
COMMON_TOKEN_ACTION = true ;

and

TOKEN_MGR_DECLS : {
void CommonTokenAction(Token token) {

3.19. How do I throw a ParseException instead
of a TokenMgrError?

If you don’t want any TokenMgrErrors being thrown, try putting a regular ex-
pression production at the very end of your .jj file that will match any character:

<*>TOKEN :

{
<UNEXPECTED_CHAR : °[] >

However, this may not do the trick. In particular, if you use MORE, it may be
hard to avoid TokenMgrErrors altogether. It is best to make a policy of catching
TokenMgrErrors, as well as ParseExceptions, whenever you call an entry point to
the parser. The only time I don’t do this is when the token manager specification
is so simple that I can be sure that no TokenMgrErrors can be thrown.

3.20. Why are line and column numbers not recorded?

In version 2.1 a new feature was introduced. You now have the option that the
line and column numbers will not be recorded in the Token objects. The option
is called KEEP_LINE_COLUMN. The default is true, so not knowing about this
option shouldn’t hurt you.

However, there appears to be a bug in the GUT interface to JavaCC (javaccw.exe),
which sets this option to false (even if you explicitly set it to true in the .jj file).

The solution is to delete all generated files (see Question 2.3, “ I changed
option z; why am I having trouble?”) and henceforth to not use the GUI interface
to JavaCC.

3.21. How can I process Unicode?

A detailed account by Ken Beesley (up-to-date for users of JavaCC 3.2) is avail-
able at http: //www.xrce.xerox.com/competencies/content-analysis/tools /publis/

javacc_unicode.pdf. What follows here is a precis.
Ensure that the option UNICODE_INPUT is set to true.

e For JavaCC 3.2

— Assuming your input source is a file (or indeed any stream) of bytes,
it needs to be converted from bytes to characters using an appropriate
decoding method; this can done by an InputStreamReader. For exam-
ple, if your input file uses the UTF-8 encoding, then you can create an
appropriate reader as follows:

InputStream istrm = new FilelnputStream(theFileName) ;
Reader rdr = new InputStreamReader(istrm, "UTF-8") ;

— Create a SimpleCharStream as follows

SimpleCharStream charStream = new SimpleCharStream(rdr) ;

(For JavaCharStream, the modifications to this line of code are obvious.)

— Now create a token manager and a parser

XXXTokenManager tokenMan = new XXXTokenManager(charStream);
XXX parser = new XXX(tokenMan) ;

e For JavaCC 4.0, there are constructors that take an encoding as an argu-
ment. See the documentation.

Chapter 4

The Parser and Lookahead

4.1. Where should I draw the line between lex-
ical analysis and parsing?

This question is dependant on the application. A lot of simple applications only
require a token manager. However, many people try to do too much with the
lexical analyzer, for example they try to write an expression parser using only the
lexical analyzer.

4.2. What is recursive descent parsing?

JavaCC’s generated parser classes work by the method of “recursive descent”.
This means that each BNF production in the .jj file is translated into a subroutine
with roughly the following mandate:

If there is a prefix of the input sequence of tokens that matches this
nonterminal’s definition,

then remove such a prefix from the input sequence
else throw a ParseEzception

I say only roughly, as the actual prefix matched is not arbitrary, but is deter-
mined by the rules of JavaCC.

4.3. What is left-recursion and why can’t I use
it?

Left-recursion is when a nonterminal contains a recursive reference to itself that
is not preceded by something that will consume tokens.

The parser class produced by JavaCC works by recursive descent. Left-
recursion is banned to prevent the generated subroutines from calling themselves
recursively ad-infinitum. Consider the following obviously left recursive produc-
tion

void A() : {} {

This will translate to a Java subroutine of the form

void A() : {} {
if (some condition) {

AQ) 5

B() ;

Now if the condition is ever true, we have an infinite recursion.

Luckly JavaCC will produce an error message, if you have left-recursive pro-
ductions.

The left-recursive production above can be transformed, using looping, to

void A() : {} {
CO (B0)*

}

or, using right-recursion, to

void A() : {} {
C() AL()

}

void A1() : {} {
[B0 AL()]

}

where Al is a new production. General methods for left-recursion removal can be
found in any text book on compiling.

4.4. How do I match an empty sequence of to-
kens?

Use {}. Usually you can use optional clauses to avoid the need. E.g. the produc-
tion

void A() - {} { BO | {} }

is the same as the production

void A() - {} { [BO | }

Sometimes I'll write the former rather than the latter because I know that in the
future there will be some semantic action associated with the empty alternative.

4.5. What is “lookahead”?

To use JavaCC effectively you have to understand how it looks ahead in the token
stream to decide what to do. Your maintainer strongly recommends reading the
lookahead mini-tutorial in the JavaCC documentation. (See Questionl.9) . The
following questions of the FAQ address some common problems and misconcep-
tions about lookahead. Ken Beesley has kindly contributed some supplementary
documentation®.

Thttp://www.engr.mun.ca/~theo/JavaCC-FAQ/kens-javacc-lookahead-summary. txt

4.6. I get a message saying “Warning: Choice
Conflict ... ”; what should I do?

Some of JavaCC’s most common error messages go something like this

Warning: Choice conflict ...

Consider using a lookahead of 2 for ...

Read the message carefully. Understand why there is a choice conflict (choice
conflicts will be explained shortly) and take appropriate action. The appropriate
action, in my experience, is rarely to use a lookahead of 2.

So what is a choice conflict. Well suppose you have a BNF production

void a() : {} {
<ID> b()

<ID> ¢()

When the parser applies this production, it must choose between expanding
it to <ID> b() and expanding it to <ID> ¢(). The default method of making
such choices is to look at the next token. But if the next token is of kind ID then
either choice is appropriate. So you have a “choice conflict”. For alternation (i.e.
|) the default choice is the first choice; that is, if you ignore the warning, the first
choice will be taken every time the next token could belong to either choice; in
this example, the second choice is unreachable.

To resolve this choice conflict you can add a “LOOKAHEAD specification” to
the first alternative. For example, if nonterminal b and nonterminal ¢ can be

distinguished on the basis of the token after the ID token, then the parser need
only lookahead 2 tokens. You tell JavaCC this by writing:

void a() : {} {
LOOKAHEAD(2)
<ID> b()

<ID> ¢()

Ok, but suppose that b and ¢ can start out the same and are only distinguish-
able by how they end. No predetermined limit on the length of the lookahead
will do. In this case, you can use “syntactic lookahead”. This means you have
the parser look ahead to see if a particular syntactic pattern is matched before
committing to a choice. Syntactic lookahead in this case would look like this:

void a() : {} {
// Take the first alternative if an <ID>followed by a b() appears next
LOOKAHEAD(<ID> b())
<ID> b()

<ID> ¢()
}

The sequence <ID> b() may be parsed twice: once for lookahead and then again
as part of regular parsing.

Another way to resolve conflicts is to rewrite the grammar. The above non-
terminal can be rewritten as

void a() : {} {
<ID>
(
b()
I
<()
)
¥

which may resolve the conflict.
Choice conflicts also come up in loops. Consider

void paramList() : {} {

(param()
<COMMA>
param()

)%

(

(<COMMA>)? <ELLIPSIS>
)?

There is a choice of whether to stay in the * loop or to exit it and process
the optional ELLIPSIS. But the default method of making the choice based on the
next token does not work; a COMMA token could be the first thing seen in the

loop body, or it could be the first thing after the loop body. For loops the default
choice is to stay in the loop.

To solve this example we could use a lookahead of 2 at the appropriate choice
point (assuming a param can not be empty and that one can’t start with an

ELLIPSIS.

void paramList() : {} {

param()

(
LOOKAHEAD(2)
<COMMA>
param()

)%

(

(<COMMA>)? <ELLIPSIS>
)?

We could also rewrite the grammar, replacing the loop with a recursion, so
that a lookahead of 1 suffices:

void paramList() : {} {
param() moreParamList()

void moreParamList() : {} {
<COMMA> (param() moreParamList() | <ELLIPSIS>)

(<ELLIPSIS>)?

Sometimes the right thing to do is to simply ignore the warning. Consider
this classic example, again from programming languages

void statement() : {}

{

<IF> exp() <THEN> statement()
(<ELSE> statement())?

...other possible statements...

Because an ELSE token could legitimately follow a statement, there is a conflict.
The fact that an ELSE appears next is not enough to indicate that the optional
“<ELSE> statement()”should be parsed. Thus there is a conflict. In fact this
conflict arises from an actual ambiguity in the grammar, in that there are two
ways to parse a statement like?

if c¢>d then if c<d then q:=1 else q:=2

The default for JavaCC parsers is to take an option rather than to leave it; and
that turns out to be the right interpretation in this case (at least for C, C++,
Java, Pascal, etc.). If you want, you can write:

void statement() : {}

2This particular example is well known to be resistant to rewriting the grammar so that a
look ahead of 1 will suffice. It is possible to remove the ambiguity. You can write a LR(1)
grammar that solves the problem, but it is an ugly grammar, and in any case unsuitable for
JavaCC. You can not write an LL(1) grammar to solve the problem.

<IF> exp() <THEN> statement()
(LOOKAHEAD(<ELSE>) <ELSE> statement())?

...other possible statements...

}

to suppress the warning.

Your maintainer humbly advises: If you get a warning, first try rewriting the
grammar so that a lookahead of 1 will suffice. Only if that is impossible or
inadvisable should you resort to adding lookahead specifications.

4.7. I added a LOOKAHEAD specification and
the warning went away; does that mean I
fixed the problem?

No. JavaCC will not report choice conflict warnings if you use a LOOKAHEAD

specification. The absence of a warning doesn’t mean that you’ve solved the

problem correctly, it just means that you added a LOOKAHEAD specification.
Consider the following example:

void eg() : {}

{
LOOKAHEAD(2)
<A> <C>

<A> <D>

Clearly the lookahead is insufficient (lookahead 3 would do the trick), but
JavaCC produces no warning. When you add a LOOKAHEAD specification,
JavaCC assumes you know what you are doing and suppresses any warnings.

4.8. Are nested syntactic lookahead specifica-
tions evaluated during syntactic lookahead?

No!
This can is a bit surprising. Consider a grammar

void start() : { } {
LOOKAHEAD(a())

a()
<EOF>

w()
<EOF>

}
voida(): {}{
(
LOOKAHEAD(w() y())

and an input sequence of “wxy”. You might expect that this string will be parsed
without error, but it isn’t. The lookahead on a() fails so the parser takes the
second (wrong) alternative in start. So why does the lookahead on a() fail? The
lookahead specification within a() is intended to steer the parser to the second
alternative when the remaining input starts does not start with “wy”. However
during syntactic lookahead, this inner syntactic lookahead is ignored. The parser
considers first whether the remaining input, “wxy”, is matched by the alternation
(w() | w() x()). First it tries the first alternative w(); this succeeds and so the
alternation (w() | w() x()) succeeds. Next the parser does a lookahead for y() on a
remaining input of “xy”; this of course fails, so the whole lookahead on a() fails.
Lookahead does not backtrack and try the second alternative of the alternation.
Once one alternative of an alternation has succeeded, the whole alternation is
considered to have succeeded; other alternatives are not considered. Nor does
lookahead pay attention to nested synactic LOOKAHEAD specifications.

This problem usually comes about when the LOOKAHEAD specification looks
past the end of the choice it applies to. So a solution to the above example is to
interchange the order of choices like this:

voida(): {}{
(

LOOKAHEAD(w() x())
w() x()

Another solution sometimes is to distribute so that the earlier choice is longer.
In the above example, we can write

voida(): {}{
LOOKAHEAD(w() y())

w() y()
w() x() y()

Generally it is a bad idea to write syntactic look-ahead specifications that look
beyond the end of the choice they apply to. If you have a production

a—>A‘B

and you transliterate it into JavaCC as

void a() : {} { LOOKAHEAD(C) A | B }

then it is a good idea that L(C') (the language of strings matched by C) is a set
of prefixes of L(A). That is
Vue L(C)-Fv e X*-uv € L(A)

In some cases to accomplish this you can put the “longer” choice first (that is,
the choice that doesn’t include prefixes of the other); in other cases you can use
distributivity to lengthen the choices.

4.9. Are parameters passed during syntactic looka-
head?

No.

4.10. Are semantic actions executed during syn-
tactic lookahead?

No.

4.11. Is semantic lookahead evaluated during syn-
tactic lookahead?

Yes. It is also evaluated during evaluation of LOOKAHEAD(n), for n > 1.

4.12. Can local variables (including parameters)
be used in semantic lookahead?

Yes to a point.

The problem is that semantic lookahead specifications are evaluated during
syntactic lookahead (and during lookahead of more than 1 token). But the sub-
routine generated to do the syntactic lookahead for a nonterminal will not declare
the parameters or the other local variables of the nonterminal. This means that
the code to do the semantic lookahead will fail to compile (in this subroutine) if
it mentions parameters or other local variables.

So if you use local variables in a semantic lookahead specification within the
BNF production for a nonterminal n, make sure that n is not used in syntactic
lookahead, or in a lookahead of more than 1 token.

This is a case of three rights not making a right! It is right that semantic
lookahead is evaluated in during syntactic lookahead, it is right (or at least useful)
that local variables can be mentioned in semantic lookahead, and it is right that
local variables do not exist during syntactic lookahead. Yet putting these three
features together tricks JavaCC into producing uncompilable code. Perhaps a
future version of JavaCC will put these interacting features on a firmer footing.

4.13. How does JavaCC differ from standard LL(1)

parsing?

Well first off JavaCC is more flexible. It lets you use multiple token lookahead,
syntactic lookahead, and semantic lookahead. If you don’t use these features,
you'll find that JavaCC is only subtly different from LL(1) parsing; it does not
calculate “follow sets”in the standard way — in fact it can’t as JavaCC has no
idea what your starting nonterminal will be.

4.14. How do I communicate from the parser to
the token manager?

It is usually a bad idea to try to have the parser try to influence the way the
token manager does its job. The reason is that the token manager may produce
tokens long before the parser consumes them. This is a result of lookahead.

Often the work-around is to use lexical states to have the token manager
change its behaviour on its own.

In other cases, the work-around is to have the token manager not change its
bevhaviour and have the parser compensate. For example in parsing C, you need
to know if an identifier is a type or not. If you were using lex and yacc, you would
probably write your parser in terms of token kinds ID and TYPEDEF NAME.
The parser will add typedef names to the symbol table after parsing each typedef
definition. The lexical analyzer will look up identifiers in the symbol table to
decide which token kind to use. This works because with lex and yacc, the lexical
analyzer is always one token ahead of the parser. In JavaCC, it is better to just
use one token kind, ID, and use a nonterminal in place of TYPEDEF_NAME:

void typedef_name() : {} {
LOOKAHEAD({ getToken(1).kind == ID && symtab.isTypedefName(get-
Token(1).image) })
<ID>}

But you have to be careful using semantic look-ahead like this. It could still
cause trouble. Consider doing a syntactic lookahead on nonterminal ‘statement’.
If the next statement is something like

{ typedefint T; Ti;i=0;retuni; }

The lookahead will fail since the semantic action putting T in the symbol table
will not be done during the lookahead! Luckly in C, there should be no need to
do a syntactic lookahead on statements.

[TBD. Think through this example very carefully.]

4.15. How do I communicate from the token
manager to the parser?

As with communication between from the parser to the token manager, this can
be tricky because the token manager is often well ahead of the parser.

For example, if you calculate the value associated with a particular token kind
in the token manager and store that value in a simple variable, that variable may
well be overwritten by the time the parser consumes the relevant token. Instead
you can use a queue. The token manager puts information into the queue and
the parser takes it out.

Another solution is to use a table. For example in dealing with #1ine directives
in C or C++, you can have the token manager fill a table indicating on which
physical lines the #1line directives occur and what the value given by the #line
is. Then the parser can use this table to calculate the “source line number” from
the physical line numbers stored in the Tokens.

4.16. What does it mean to put a regular ex-
pression within a BNF production?

It is possible to embed a regular expression within a BNF production. For example

//A regular expression production
TOKEN : { <ABC : “abc” >}

//A BNF production
void nonterm() : {} {

“abc”
“def”

<(["0"-"9"])+>
“abc”
“def”
<(["0"-"9"])+>

There are six regular expressions within the BNF production. The first is
simply a Java string and is the same string that appears in the earlier regular
expression production. The second is simply a Java string, but does not (we
will assume) appear in a regular expression production. The third is a “complex
regular”’ expression. The next three simply duplicate the first three.

The code above is essentially equivalent to the following:

//A regular expression production
TOKEN : { <ABC: "abc” >}

TOKEN : { <ANONO : “def’ >}
TOKEN : { <ANONL1 : <(["0"-"9"])+>}
TOKEN : { <ANON2 : <(["0"-"9"])+>}
//A BNF production

void nonterm() : {}

{
<ABC>
<ANONO>
<ANON1>
<ABC>
<ANONO>
<ANON2>

In general when a regular expression is a Java string and identical to regular
expression occurring in a regular expression production®, then the Java string is
interchangeable with the token kind from the regular expression production.

When a regular expression is a Java string, but there is no corresponding
regular expression production, then JavaCC essentially makes up a corresponding
regular expression production. This is shown by the “def’which becomes an
anonymous regular expression production. Note that all occurrences of the same
string end up represented by a single regular expression production.

Finally consider the two occurrences of the complex regular expression <([“0"-
“9"])+>. Each one is turned into a different regular expression production. This
spells trouble, as the ANON2 regular expression production will never succeed.
(See Question 3.3. “ What if more than one regular expression matches a prefix
of the remaining input?”)

See also Question 4.17, “ When should regular expressions be put directly into
a BNF production?” .

4.17. When should regular expressions be put
directly into a BNF production?

First read Question 4.16, “ What does it mean to put a regular expression within
a BNF production?” .

For regular expressions that are simply strings, you might as well put them
directly into the BNF productions, and not bother with defining them in a regular
expression production.® For more complex regular expressions, it is best to give

3And provided that regular expression applies in the DEFAULT lexical state.

40k there are still a few reasons to use a regular expression production. One is if you are
using lexical states other than DEFAULT. Another is if you want to ignore the case of a word.
Also, some people just like to have an alphabetical list of their keywords somewhere.

them a name, using a regular expression production. There are two reasons for
this. The first is error reporting. If you give a complex regular expression a
name, that name will be used in the message attached to any ParseExceptions
generated. If you don’t give it a name, JavaCC will make up a name like “<token
of kind 42>". The second is perspicuity. Consider the following example:

void letter_number_letters() : {
Token letter, number, letters; }

letter=<["a"-"Z"]>

number=<["0"-"9"|>

letters=<(["a"-"2"])+>

{ return some function of letter, number and letters ; }

The intention is to be able to parse strings like “a9abc”. Written this way it
is a bit hard to see what is wrong. Rewrite it as

TOKEN : < LETTER : ["a"-"2"] >}
TOKEN : < NUMBER : [“0"-“9"] >}
TOKEN : < LETTERS : ([“a"-"Z"])+ >}

void letter_number_letters() : {
Token letter, number, letters; }

letter=<LETTER>

number=<NUMBER>

letters=<LETTERS>

{ return some function of letter, number and letters ; }

}

and it might be easier to see the error. On a string like “z7d”the token manager
will find a LETTER, a NUMBER and then another LETTER; the BNF production
can not succeed. (See Question 3.3, “ What if more than one regular expression
matches a prefix of the remaining input?”)

4.18. How do I parse a sequence without allow-
ing duplications?
This turns out to be a bit tricky. Of course you can list all the alteratives. Say

you want A, B, C, each optionally, in any order, with no duplications; well there
are only 16 possibilities:

void abc() : {} {
[<A> [[<C>1]]]

<A> <C>[]
[<A>[<C>1]]
 <C>[<A> |
<C>[<A>[]]

<C> [<A>]

}

This approach is already ugly and won’t scale.

A better approach is to use semantic actions to record what has been seen

void abc() : {} {

(

<A>
{ if(seen an A already) throw ParseException(“Duplicate A");
else record an A }

{ if(seen an B already) throw ParseException(“Duplicate B");
else record an B }

<C>
{ if(seen an C already) throw ParseException(“Duplicate C");
else record an C }

)*

The problem with this approach is that it will not work well with syntactic

lookahead. Ninety-nine percent of the time you won’t care about this problem,
but consider the following highly contrived example:

void toughChoice() : {}

{

LOOKAHEAD(abc())

abc()

<A> <A>

When the input is two A’s followed by two B’s, the second choice should be
taken. If you use the first (ugly) version of abc, above, then that’s what happens.
If you use the second (nice) version of abc, then the first choice is taken, since
syntactically abc is (<A> | | <C>)*.

4.19. How do I deal with keywords that aren’t
reserved?

In Java, C++, and many other languages, keywords, like “int”, “if”, “throw” and
so on are reserved, meaning that you can’t use them for any purpose other than
that defined by the language; in particular you can use them for variable names,
function names, class names, etc. In some applications, keywords are not reserved.
For example, in the PL/T language, the following is a valid statement

if if = then then then = else ; else else = if ;

Sometimes you want “if”, “then”, and “else” to act like keywords and some-
times like identifiers.

This is a special case of a more general problem discussed in Question 3.6,
“How do I make a character sequence match more than one token kind?”.

For a more modern example, in parsing URL’s, we might want to treat the
word “http”as a keyword, but we don’t want to prevent it being used as a host
name or a path segment. Suppose we write the following productions®:

5This example is based on the syntax for HTTP URLs in RFC: 2616 of the IETF by R. Field-
ing, et. al. However, I've made a number of simplifications and omissions for the sake of a

TOKEN : { <HTTP : “http” >}

TOKEN : { <LABEL : <ALPHANUM>|<ALPHANUM>(<ALPHANUM>|"-")*
<ALPHANUM> > }

void httpURL() : {} { <HTTP> "“"*//"host() port_path_and_query() }

void host() : {} { <LABEL>("." <LABEL>)* }

Both the regular expressions labelled HT TP and LABEL, match the string “http”.
As covered in Question 3.3, “ What if more than one regular expression matches
a prefix of the remaining input?”, the first rule will be chosen; thus the URL

http://www.http.org/

will not be accepted by the grammar. So what can you do? There are basically
three strategies: put choices in the grammar, replace keywords with semantic
lookahead, or use lexical states.

Putting choices in the grammar. Going back to the original grammar, we
can see that, the problem is that where we say we expect a LABEL we actually
intended to expect either a LABEL or a HTTP. We can rewrite the last production
as

void host() : {} { label() (“."label())* }
void label() : {} { <LABEL> | <HTTP> }

Replacing keywords with semantic lookahead. Here we eliminate the
offending keyword production. In the example we would eliminate the regular
expression production labelled HT'TP. Then we have to rewrite httpURL as

void httpURL() : {} {

simpler example.

LOOKAHEAD({getToken(1).kind == LABEL && getToken(1).image.equals(“http")}

)
<LABEL> """//"host() port_path_and_query() }

The added semantic lookahead ensures that the URL really begins with a LABEL
which is actually the keyword “http”. [TBD Check this example.]

Using lexical states. The idea is to use a different lexical state when the
word is reserved and when it isn’t. (See Question 3.11, “What are lexical states
all about?”) In the example, we can make “http” reserved in the default lexical
state, but not reserved when a label is expected. In the example, this is easy
because it is clear when a label is expected: after a “//” and after a “.”.° Thus
we can rewrite the regular expression productions as

TOKEN : { <HTTP : “http">}

TOKEN : { <DSLASH : “//"> : LABELEXPECTED }

TOKEN : { <DOT : “."> : LABELEXPECTED }

<LABELEXPECTED> TOKEN : { <LABEL : <ALPHANUM>|<ALPHANUM>(
<ALPHANUM>|“")* <ALPHANUM> > :DEFAULT }

And the BNF productions are

void httpURL() : {} { <HTTP> "" <DSLASH> host() port_path_and_query() }
void host() : {} { <LABEL>(<DOT> <LABEL>)* }

6And we are assuming that double slashes and dots are always followed by labels, in a
syntactically correct input stream.

4.20. There’s an error in the input, so why doesn’t
my parser throw a ParseException?

Perhaps you forgot the <EOF> in the production for your start nonterminal.

Chapter 5

Semantic Actions

5.1. I’ve written/found a parser, but it doesn’t
do anything?

You need to add semantic actions. Semantic actions are bits of Java code that
get executed as the parser parses.

5.2. How do I capture and traverse a sequence
of tokens?

Each Token object has a pointer to the next Token object. Well that’s not quite
right. There are two kinds of Token objects. There are regular token objects,
created by regular expression productions prefixed by the keyword TOKEN. And,
there are special token objects, created by regular expression productions prefixed
by the keyword SPECIAL_TOKEN. Each regular Token object has a pointer to the
next regular Token object. We'll deal with the special tokens later.

Now since the tokens are nicely linked into a list, we can represent a sequence
of tokens occurring in the document with a class by pointing to the first token in
the sequence and the first token to follow the sequence.

class TokenList {

private Token head ;
private Token tail ;

TokenList(Token head, Token tail) {

this.head = head ;
this.tail = tail ; }

We can create such a list using semantic actions in the parser like this:

TokenList CompilationUnit() : {
Token head ;

H
{ head = getToken('1); }
[PackageDeclaration() | (ImportDeclaration())* (TypeDeclaration())*
<EOF>
{ return new TokenList(head, getToken(0)) ; }

To print regular tokens in the list, we can simply traverse the list

class TokenList {

void print(PrintStream os) {
for(Token p = head ; p !=tail ; p = p.next) {
os.print(p.image) ; } }

This method of traversing the list of tokens is appropriate for many applica-
tions.
Here is some of what I got from printing the tokens of a Java file:

publicclassToken{publicintkind;publicintbeginlLine,

Obviously this is not much good for either human or machine consumption. I
could just print a space between each pair of adjacent tokens. A nicer solution is
to capture all the spaces and comments using special tokens. Each Token object
(whether regular or special) has a field called specialToken, which points to the
special token that appeared in the text immediately prior, if there was one, and
is null otherwise. So prior to printing the image of each token, we print the image
of the preceding special token, if any:

class TokenList {

private void printSpecialTokens(PrintStream ps, Token st) {
if(st!=null) {
printSpecial Tokens(ps, st.specialToken) ;
ps.print(st.image) ; } }

void printWithSpecials(PrintStream ps) {

for(Token p = head ; p !=tail ; p = p.next) {
printSpecial Tokens(ps, p.specialToken) ;
ps.print(p.image) ; } }

If you want to capture and print a whole file, don’t forget about the special
tokens that precede the EOF token.

5.3. Why does my parser use so much space?

One reason might be that you saved a pointer to a token like this.

void CompilationUnit() : {

Token name ;

H
Modifiers() Type()
name = <ID>
{ System.out.printIn(name.image) ; }
Extends() Implements() ClassBody()

The variable name is last used in the call to println, but it remains on the stack
pointing to that token until the generated CompilationUnit method returns. This
means that the ID token can’t be garbage collected until the subroutine returns.
So what? That’s only one token! But remember, that token has a next field
that points to the next token and that one has a next field and so on. So all the
tokens from the ID to the end of the class body can not be garbage collected until
the subroutine returns. The solution is simple: add “name = null;” after the final

use of the Token variable and hope that your compiler doesn’t optimize away this
“dead code”.

Chapter 6

JJTree and JTB

TBD. Your maintainer would especially appreciate volunteers to contribute to
this part of the FAQ.

6.1. What are JJTree and JTB?

These are preprocessors that produce .jj files. The .jj files produced will produce
parsers that produce trees.

6.2. Where can I find JJTree?

JJTree comes with JavaCC. See Question 1.6, “ Where can I get JavaCC?”. .

6.3. Where can I find JTB?

See JTB: The Java Tree Builder Homepage®..

Yhttp:/ /www.cs.purdue.edu/jtb/

Chapter 7

Applications of JavaCC

7.1. Where can I find a parser for z?

First look in Dongwon Lee’s JavaCC Grammar Repository' or in the repository
at Java.net”.
Then ask the newsgroup or the mailing list.

7.2. How do I parse arithmetic expressions?

See the examples that come with JavaCC.

See any text on compiling.

See Parsing Epressions by Recursive Descent® and a tutorial by Theodore
Norvell*.

thttp:/ /www.cobase.cs.ucla.edu/pub/javacc/

Zhttps:/ /javacc.dev.java.net /servlets/ProjectDocumentList ?folderID=110
3http:/ /www.engr.mun.ca/~theo/Misc/index.html#parsingExps
4http://www.engr.mun.ca/~theo/JavaCC-Tutorial/.

7.3. DI’m writing a programming language inter-
preter; how do I deal with loops?

A lot of people who want to write an interpreter for a programming language
seem to start with a calculator for expressions, evaluating during parsing, as is
quite reasonable. Then they add, say, assignments and if-then-else statements,
and all goes well. Now they want to add loops. Having committed to the idea
that they are evaluating while parsing they want to know how back up the token
manager so that loop-bodies can be reparsed, and thus reevaluated, over and over
and over again.

It’s a sensible idea, but it’s clear that JavaCC will not make this approach
pleasant. Your maintainer suggests translating to an intermediate code during
parsing, and then executing the intermediate code. A tree makes a convenient
intermediate code. Consider using JJTree or JTB (see Chapter 6).

If you still want to back up the token manager. I suggest that you start by
tokenizing the entire file, capturing the tokens in a list (see Question 5.2, «“ How
do I capture and traverse a sequence of tokens?”.) or, better, a Vector. Now
write a custom token manager that delivers this captured sequence of tokens, and
also allows backing up.

Chapter 8

Comparing JavaCC with other
tools

[TBD. Your maintainer would welcome comparisons with ANTLR, CUP, JLex,
JFlex, and any others that users can contribute. My limited understanding is
that CUP is similar to Yacc and Bison, and that JLex and JFlex are similar to
Lex and Flex.]

8.1. Since LL(1) C LALR(1), wouldn’t a tool based
on LALR parsing be better?

It’s true that there are strictly more languages that can be described by LALR(1)
grammars than by LL(1) grammars. Furthermore almost every parsing problem
that arises in programming languages has an LALR(1) solution and the same can
not be said for LL(1).

But the situation in parser generators is a big more complicated. JavaCC is
based on LL(1) parsing, but it allows you to use grammars that are not LL(1).

As long as you can use JavaCC’s look-ahead specification to guide the parsing
where the LL(1) rules are not sufficient, JavaCC can handle any grammar that is
not left-recursive. Similarly tools based on LALR(1) or LR(1) parsing generally
allow input grammars outside those classes.

A case in point is the handling of if-statements in C, Java, and similar lan-
guages. Abstracted, the grammar is

S—x|iS|iSeS

The theoretical result is that there is no LL(1) grammar that can handle the
construct, but there is an LALR(1) grammar. Experienced parser generator users
ignore this result. Both users of LALR(1) based parser generator (such as yacc)
and users of LL(1) based parser generators (such as JavaCC) generally use the
same ambiguous set of grammar rules, which is neither LALR(1) nor LL(1), and
use other mechanisms to resolve the ambiguity.

8.2. How does JavaCC compare with Lex and
Flex?

Lex is the lexical analyzer supplied for many years with most versions of Unix.
Flex is a freely distributable relative associated with the GNU project. JavaCC
and lex/flex are actually quite similar. Both work essentially the same way,
turning a set of regular expressions into a big finite state automaton and use the
same rules (for example the maximal munch rule). The big difference is the lex
and flex produce C, whereas JavaCC produces Java.

One facility that lex and flex have, that JavaCC lacks, is the ability to look
ahead in the input stream past the end of the matched token. For a classic
example, to recognize the Fortran keyword “DO”, you have to look forward in
the input stream to find a comma. This is because

DO 10 I = 1,20
is a do-statement, whereas

DO 10 I = 1.20
is an assignment to a variable called DO10I (Fortran totally ignores blanks). Deal-
ing with this sort of thing is easy in lex, but very hard in JavaCC.

However JavaCC does have some nice features that Lex and Flex lack: Com-
mon token actions, MORE rules, SPECIAL_TOKEN rules.

8.3. How does JavaCC compare with other Yacc
and Bison?

Yacc is a parser generator developed at Bell labs. Bison is a freely distributable
reimplementation associated with the GNU project. Yacc and Bison produce C
whereas JavaCC produces Java.

The other big difference is that Yacc and Bison work bottom-up, whereas
JavaCC works top-down. This means that Yacc and Bison make choices after
consuming all the tokens associated with the choice, whereas JavaCC has to
make its choices prior to consuming any of the tokens associated with the choice.
However, JavaCC’s lookahead capabilities allow it to peek well ahead in the token
stream without consuming any tokens; the lookahead capabilities ameliorate most
of the disadvantages of the top-down approach.

Yacc and Bison require BNF grammars, whereas JavaCC accepts EBNF gram-
mars. In a BNF grammar, each nonterminal is described as choice of zero or more
sequences of zero or more terminals and nonterminals. EBNF extends BNF with
looping, optional parts, and allows choices anywhere, not just at the top level. For
this reason Yacc/Bison grammars tend to have more nonterminals than JavaCC
grammars and to be harder to read. For example the JavaCC production

void eg() = {} {a() (b() [*"]D* }

might be written as

eg: aegl

egl : /* empty */
legl b optcomma
optcomma : /* empty */

More importantly, it is often easier to write semantic actions for JavaCC gram-
mars than for Yacc grammars, because there is less need to communicate values
from one rule to another.

Yacc has no equivalent of JavaCC’s parameterized nonterminals. While it is
fairly easy to pass information up the parse-tree in both Yacc and JavaCC, it is
hard to pass information down the parse-tree in Yacc. For example, if, in the
above example, we computed information in parsing the a that we wanted to pass
to the b, this is easy in JavaCC, using parameters, but hard in Yacc.

As the example above shows, Yacc has no scruples about left-recursive pro-
ductions.

My assessment is that if your language is totally unsuitable for top-down
parsing, you’ll be happier with a bottom-up parser like Yacc or Bison. However,
if your language can be parsed top-down without too many appeals to lookahead,
then JavaCC’s combination of EBNF and parameters can make life much more
enjoyable.

	General Information on JavaCC and Parsing
	Recent changes to the FAQ
	What is JavaCC?
	Could you explain that in more detail?
	What does JavaCC not do?
	What can JavaCC be used for?
	Where can I get JavaCC?
	What legal restrictions are there on JavaCC?
	Is the source code for JavaCC publicly available?
	Is there any documentation?
	Are there books, articles, or tutorials on JavaCC?
	Are there publicly available grammars?
	Are there books or tutorials on parsing theory?
	Is there a newsgroup or mailing list?
	Should I send my question to the newsgroup or mailing list?
	Who wrote JavaCC and who maintains it?

	Common Issues
	What files does JavaCC produce?
	Can I modify the generated files?
	I changed option x; why am I having trouble?
	How do I put the generated classes in a package?
	How do I use JavaCC with ANT?
	Is there an Eclipse Plug-in for JavaCC?

	The Token Manager
	What is a token manager?
	How do I read from a string instead of a file?
	What if more than one regular expression matches a prefix of the remaining input?
	What if the chosen regular expression matches more than one prefix?
	What if no regular expression matches a prefix of the remaining input?
	How do I make a character sequence match more than one token kind?
	How do I match any character?
	Should I use (126[])+ to match an arbitrarily long sequence of characters?
	How do I match exactly n repetitions of a regular expression?
	What are TOKEN, SKIP, and SPECIAL_TOKEN?
	What are lexical states all about?
	Can the parser force a switch to a new lexical state?
	Is there a way to make SwitchTo safer?
	What is MORE?
	Why do the example Java and C++ token managers report an error when the last line of a file is a single line comment?
	What is a lexical action?
	How do I tokenize nested comments?
	What is a common token action?
	How do I throw a ParseException instead of a TokenMgrError?
	Why are line and column numbers not recorded?
	How can I process Unicode?

	The Parser and Lookahead
	Where should I draw the line between lexical analysis and parsing?
	What is recursive descent parsing?
	What is left-recursion and why can't I use it?
	How do I match an empty sequence of tokens?
	What is ``lookahead''?
	I get a message saying ``Warning: Choice Conflict ... ''; what should I do?
	I added a LOOKAHEAD specification and the warning went away; does that mean I fixed the problem?
	Are nested syntactic lookahead specifications evaluated during syntactic lookahead?
	Are parameters passed during syntactic lookahead?
	Are semantic actions executed during syntactic lookahead?
	Is semantic lookahead evaluated during syntactic lookahead?
	Can local variables (including parameters) be used in semantic lookahead?
	How does JavaCC differ from standard LL(1) parsing?
	How do I communicate from the parser to the token manager?
	How do I communicate from the token manager to the parser?
	What does it mean to put a regular expression within a BNF production?
	When should regular expressions be put directly into a BNF production?
	How do I parse a sequence without allowing duplications?
	How do I deal with keywords that aren't reserved?
	There's an error in the input, so why doesn't my parser throw a ParseException?

	Semantic Actions
	I've written/found a parser, but it doesn't do anything?
	How do I capture and traverse a sequence of tokens?
	Why does my parser use so much space?

	JJTree and JTB
	What are JJTree and JTB?
	Where can I find JJTree?
	Where can I find JTB?

	Applications of JavaCC
	Where can I find a parser for x?
	How do I parse arithmetic expressions?
	I'm writing a programming language interpreter; how do I deal with loops?

	Comparing JavaCC with other tools
	Since LL(1)LALR(1), wouldn't a tool based on LALR parsing be better?
	How does JavaCC compare with Lex and Flex?
	How does JavaCC compare with other Yacc and Bison?

