
Structure and Patterns in
Software Design and the

UniÞed Modelling
Language (UML)

Theodore Norvell

1

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Structure
The interrelation or arrangement of parts in a complex entity.
As programs have become more complex, new structuring
concepts have evolved to deal with them.
Crucial Book: Structured Programming 1972 contains 3
important essays

� Edsger Dijkstra � On algorithmic structure
� C.A.R. Hoare � On storage structure
� Ole-Johan Dahl & C.A.R. Hoare � On object oriented

programming

Quote from last: ... we shall explore certain ways of program
structuring and point out their relationship to concept
modelling.

2

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Mainstream structuring concepts
50s & 60s 70�85 85�01
Prehistory Structured

Programming
OO Program-
ming

Algorithmic
structuring

Flowcharts +Compositional
constructs

+Object Inter-
action

Storage
Structuring

Arrays +Records,
unions, pointers

+Object rela-
tionships

System
structuring

Subroutines +Modules
(packages)

+Templates,
Frameworks

Dominant
Languages

ASM,
Fortran,
COBOL

PL/1, Pascal, C,
Fortran 77, Ada

Ada, C++, Java

Important
Languages

Algol 60,
Algol 68,
LISP

Simula,
Smalltalk,
APL, Prolog,
Euclid

Haskell, SML

3

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Algorithmic structure� as an example
1950s & 60�s: unstructured use of conditional and uncondi-
tional branches.
Flowcharts evolved to help S/W engineers visualize the
complexity:

4

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Compositional constructs
It was observed that all algorithms could be expressed using
only 3 patterns of composition
Moreover, each part has a meaning of its own (a function, or
more generally a relation)

 f

g h

σ

otherwiseh
fifg

)(
)()(

{
σ

σσ
σ =′

 f

g

σ

))((σσ fg=′

f

g

σ

))(((min)(
,...}1,0{

σσσ n

n

n gfnotnwhereg
∈

==′

Alternation (if-then-else)
Sequential

Compositon

Iteration (while-loop)

Eventually ßow-charts were replaced by pseudo-code, which
is less expressive, but expresses these patterns well:

if f then g else h f;g while f do g

5

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

System Structuring
� 50s & 60s: unstructured collections of subroutines operating

on global data structure
� 70�85: subroutines operating on same data collected in a

�module� together with that data
∗ Some subroutines comprise the �public interface� to the

module
∗ The rest & the data are �private�.
∗ Black-box view: Consider a calculator

· The buttons and the display are the public interface.
· The algorithms used & the internal registers are

�private�
· We can completely describe the interface without

describing the internal working.

6

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Module Relationships
Modules use (depend on) each other.
Kinds of dependency:

� X calls a subroutine of Y
� X uses a data type deÞned in Y
� X uses a constant deÞned in Y

Often dependance is in layers. Modules depend on modules
below them as bricks depend on bricks below them
A compiler as a layered system

Lexical Analyzer Code Generator

Parser

Type Inference
and Constraint

Checker

Symbol Table

7

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

System Structure with Object-
Orientation
Each compile-time module has a single run-time instance

Static structure = dynamic structure
With OO systems

modules −→ classes & objects & packages

classes� compile time entities
objects� runtime entities.

� 1 class may have 0 or to run-time instances (objects).
� 1 object belongs to more than one class.

Static structure 6= dynamic structure
Dependence relations between classes are now much more
complex

� Each X may call a subroutine of class Y
� Each X may keep a pointer to an instance of Y
� Each X may create a Y
� Each X has a Y as a part of it (aggregation)
� Each X is also a Y. (inheritance / generalization)

8

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Changing Views on Programs
Old view:

� A program is an algorithm that operates on variables

New view:

� A program is a collection of mutually dependant classes.
� A program in execution is an evolving community of

relating objects.

The main problem of software engineering is

Mastering complexity.
Errors are more expensive

� if found in design rather than speciÞcation/analysis
� if found in implementation rather than design
� if found after deployment rather than in implementation

Thus we must have good notations to master complexity in
speciÞcation and design.

9

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

What is the UML
Premise

Software systems are complex. We need simpler views of
them in order to master that complexity.

UML is a language for visual modelling.

� Visual modelling is one way of creating accessible abstrac-
tions of complex systems.

� UML is a visual language � follows the tradition of Booch
notation and OMT.

� UML supports OO analysis and design.

Use of UML

� In analysis and speciÞcation phases to model
∗ real-world objects and classes, situations, and processes

(e.g., business processes).
∗ existing software components.
∗ interactions between planned software and the above.

� In design phase to model internal components and pro-
cesses.

� To document legacy systems.

10

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Where UML Þts in the software
lifecycle
Not only is software complex, it interacts with a complex
world. We need abstracted views of the real world (including
other software systems).
Analysis of the environment has become an important part of
requirements engineering and system speciÞcation.

Conceptual
Model
(UML)

Real World Code

Design Model
(UML)

Analyze
Im

pl
em

en
t

Design

D
es

cr
ib

es

D
es

cr
ib

es

11

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Diagrams of UML
� Class diagrams � classes and packages, their properties,

relationships.
� Object diagrams � snapshots of objects and their relation-

ships.
� Use-case diagrams � use cases, actors, relationships.
� Sequence diagrams and Collaboration diagrams � typical

sequences of events (e.g., calls).
� Statechart diagrams � Þnite state machines.
� Activity diagrams � algorithms / data-ßow.
� Component diagrams � implementation components (e.g.

source & object Þles)
� Deployment diagrams � deployment of components on

computers.

12

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

A Class Diagram

Applet
(f rom applet)

Frame
(fro m awt)

Applet
(from applet)

TinyApplet MainFrame
10..1

BigApplet
10..11

has
1

has

Each TinyApplet
has 1 MainFrame.
A MainFrame may
belong to at most
one Tiny Applet

Each MainFrame
is a Frame

Classes

0..10..1

Diagrams shows

� 6 classes
� 3 inheritance relationships
� 2 has-a relationships.

13

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Supplying information about a class

AbstractPointer
theStore : Store

AbstractPointer(...)
putValue(pointee : AbstractDatum)
putValue(addr : int)
getValue() : int
getByte(i : int) : int
<<abstract>> getPointeeType()

<<Abstract>>

Each class is displayed as a box with 3 or more parts:

� <<stereotype>> Name. Stereotypes are used to identify
classes that are used in stereotypical ways, e.g. interfaces,
abstract classes, actors (agents outside system), exceptions,
etc. The Name is the name.

� Attributes. (A.k.a. Fields / data members). This class has
one.

� Operations. (A.k.a. Method signatures, function members).
� Other parts as you please. E.g., responsibilities

Operations and attributes are marked according to visibility.

14

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

We can model dependance
How to do cyclic calling without cyclic dependance.

BigApplet

Command
Interface

DisplayManager
(f rom DisplayEngine)

BigApplet
realizes
(implements) the
Command
Interface

DisplayMaager
Depends on
Command
Interface

BigApplet
Depends on
Display
Manager<<creates>>

15

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Class relationships
� Is-a (specialization): Every D is an M. Class D specializes

class M. Class D inherits from class M.
In C++ we say D derives from M. In Java D extends M.

D M

Note that class D depends on M.
� Realizes. D implements interface M. Special case of above

for interfaces.

D M
<<Interface>>

or lollypop notation:

D

M

16

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

� Knows-a (association): Every D can (potentially) easily Þnd
an M.
In C++ (or Java) D might have a data member (Þeld) that is
a pointer to an M.

D M0..n0..n

In the above diagram the D object knows 0 of more M
objects. In C++ you might have a data member that is a
vector of pointers to M objects.
Use a two way arrow if the M object can Þnd the D object
that can Þnd it.
Use no arrow if there is an association, but you don�t want
to imply that either can Þnd the other.
Usually (with the arrow) D depends on M.

� Has-a (aggregation): Every D has an M�s.
This is a special case of �knows-a�. Use it when the
lifetimes are coincident; i.e. creating a D object creates the
M object and destroying the D object destroys the M object.

17

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

MD
1

-name

1

In C++, D might have a private data member of type M
called name, or D might have a pointer to an M object that
is set with new when a D is constructed and sent to delete
when a D is destructed..

� Depends on: Use when there is dependance, but none of the
above are appropriate.
E.g. Some method D.foo() takes an M as a parameter,
returns an M as a result, creates an M, but doesn�t maintain
a long term association, or calls a static method of M.

D M

It is good to use a stereotype to describe the type of
dependance. E.g.:

D M<<calls>>

18

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Sequence diagrams
Show typical scenarios � not algorithms.

client : BigApplet cppl :
CPlusPlusLang

 : DisplayManager : Evaluator

loadStr("C++",s) <<create>>

<<create>>(cppl)

<<create>>

Messages may be sent to self
 : BigAppletclient

loadStream

loadString

The stream is
read to create a
string

19

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Sequence diagrams
... can show the interaction of a system with objects outside
(speciÞcation)

 : user : TM : file-system

click on load menu item

click on file name or cancel

File menu
appears

get list of files

read the fi le

If file is
readable

20

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Collaboration Diagrams
Same info as sequence diagram, but in different form

client

 : BigApplet

cppl :
CPlusPlusLang

 : DisplayManager

 : Evaluator

1: loadStr("C++",s)

2: <<create>>
3: <<create>>(cppl)

4: <<create>>

21

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

State Diagrams
Describes the semantics of an interface in term of the states of
the objects.
Usually abstracts related states to a single state.
A stack.

Empty nonEmptyNonFul Full
push

pop

Error

pop
push

push

pop

pushpop

22

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

A VCR showing substates

Tape loaded

Stopped
Playback

RecordStandby

Stopped
Playback

Empty

RecordStandby

program

start time

cancel stop time, stop
stop

playeject

ejectload

23

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Patterns
Two stories

Romeo and Juliet Jack and Rose
meet but they are divided by

family fueds class and betrothal
Nevertheless, they fall in love.

All is bliss until
Tybalt dies the ship hits an iceberg

culminating in the death of
both. Jack.

Similarity both of characters�s relationships and of plot.
The star-crossed lovers pattern

Boy and girl
meet but they are divided by

social circumstances.
Nevertheless, they fall in love.
All is bliss until fate intervenes

culminating in their separation by death.

24

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Patterns of OO Design
Use of ßow charts led to the realization that

� Hierarchical decomposition is good
∗ parts have meaning, parts have parts with meaning

� A small number of composition rules sufÞce
∗ and are worth naming and paying attention to

A second important book
Design Patterns by Gamma, Helm, Johnson, Vlissides

1995
Explores patterns of object composition that recur and lead to
�good� designs.

25

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

The Observer Pattern
From Gamma et al.

Observer Interface

<<interface>> update()

<<Interface>>
Abstract Subject

attach(Observer)
detach(Observer)
notify()

0..n0..n

Concrete Subject

getState()
setState()

Concrete Observer

update()

-subject

attach(o) :
 observers :=
observers U {o}

notify():
 for each o in
observers...

update() :
 ...
 subject.getState()
 ...

26

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

The Observer in SWING
SomeListenerClassDefaultBoundedRangeModel

getValue() : int
setValue(arg0 : int) : void
addChangeListener(arg0 : ChangeListener) : void
removeChangeListener(arg0 : ChangeListener) : void
fireStateChanged() : void

(from swing)

ChangeListener

stateChanged(arg0 : ChangeEvent) : void

(from event)

<<Interface>>EventListenerList

add(arg0 : Class, arg1 : EventListener) : void
remove(arg0 : Class, arg1 : EventListener) : void
getListenerList() : Object[]

(from event)

11

0..n0..n

27

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Abstract Factory Pattern

Abstract Factory

createProduct()

Concrete
Factory1

Concrete
Factory 2

Abstract
Product

Product1 Product2

Concrete
Factory1
creates
Product1

Concrete
Factory2
creates
Product2

28

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Abstract Factory in the Teaching
Machine

IntTypeNd

Abstract
Datum

Array Datum Int DatumArrayTypeNd
arraySize : int

TypeNd

makeDatum()

-baseType

makeDatum() :
 a := new ArrayDatum()
 for i : 1..arraySize
 d := baseType.makeDatum()
 add d to a

29

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Patterns as a structuring device
Gamma et al describe 23 patterns of the following kinds

� Behavioural patterns � include interactions across time
� Structural patterns � how objects aggregate
� Creational patterns � solve problems with object creation

Patterns give the S/W engineer a new vocabulary with which
to understand software systems and to create understandable
designs.

30

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Structure Patterns and Structuralism
Structuralism in Linguistics, Sociology and Anthropology
Claude Levi-Strauss is major Þgure.

� Focuses on structures on mind and society.
� Teaches that not all structures are equal in the human mind.
� May have much to teach software engineering
� May have something to learn from software engineering.

31

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Conclusions and Assessment on UML
UML has considerable momentum.

� Lots of books.
� Good industry uptake.

UML is big and expandable.

� It offers something to everyone.
� But it is weak on data ßow.
� Assertion language (OCL) is deÞned, but not widely known

and may deÞne semantics of classes better than state or
activity diagrams.

Tools
There are several tools that hold models

� Keep diagrams consistent with database.
� Automatic analysis of source code.
� Automatic generation of source code.
� Round-trip engineering.

32

Structure and Patterns in Software Design and the UniÞed Modelling Language (UML) Theodore Norvell

Conclusions on structuring
History shows frequent paradigm shifts in software engineer-
ing.
The story is not over.
New structuring ideas will appear.
Those not open to them will be left behind.
Notations help abstract away from complexity.

� It helps to look at the complex in simple ways.

Eliminating complexity is better than abstracting it.
Mastering complex systems is not limited to software engi-
neering.
It also applies to

� Computer Engineering in general.
� Electrical Engineering & Systems Engineering

33

