
Making GUIs less messy: a preliminary report on the Take
Back Control library

Theodore S. Norvell
Dept. Electrical and Computer Engineering

Memorial University
theo@mun.ca

Abstract— Implementing user interfaces can be messy. The
implementation is typically based on a state machine and looks
nothing like the nice structured use cases that you probably
wrote to specify the UI and reviewed with the customer. The
implementation is divorced from the specification by at least
two levels of abstraction: translation to a state machine and
implementation of that state machine This makes user interfaces
hard to change, hard to validate, hard to understand.

This paper presents a library of combinators that allows
us to write user interfaces in a way that is easy to read
and that matches use case based specifications. This makes
implementation easier, validation easier, and the code easier to
understand. It replaces a messy divorce with a harmonious union
between the specification and implementation.

Index Terms— User interfaces, inversion of control, monadic
programming

I. INTRODUCTION

My first job after graduating from university was to create a
prototype programming environment and an interpreter for the
graphical programming language ProGraph. [3] The language,
with a different implementation, later became a successful
commercial product. One thing that was interesting about my
implementation is that it was not event driven. When my
program needed input, it would wait (by polling) for the user
to do something, which in this case was either to click on a
graphics tablet with a special stylus or to press a key on the
keyboard. This was a program written without inversion of
control. This was a pleasant way to write a user interface.

The second thing that is relevant about the user interface
(UI) of the ProGraph project is the way that I documented
it. For this I used a context free grammar (CFG) [1], [2] in
which the symbols were either actions of the user or actions
of the system. I probably did this because, as a new graduate
in 1985, I didn’t know much about UI specification, but I
sure knew a lot about CFGs. Also the use of a CFG was
a good fit for the project because the IDE had two modes:
interpretation and editing. While editing you could start the
interpreter, but if it stopped —perhaps because of a bug or
an incomplete subroutine— you could then enter the editor,
change the code and resume interpreting. Thus editing and
interpreting sessions could be nested to an arbitrary depth.
The implementation of this was easy because the UI didn’t use
inversion of control, so starting a new editing or interpretation
session was just a matter of calling a (recursive) subroutine. I
don’t think this was actually good UI design, but the point is

that it required more than a finite state machine to describe.
Although the use of CFGs to document or specify UIs never
caught on (well not yet, anyway), the use of Use Case models
is very popular and Use Cases resemble extended context free
grammars if you don’t look too carefully at the details.

For some time it has seemed to me that we should not
only be able to document UIs using context-free grammars,
but to write them in a way that resembles CFGs. An analogy
—if you are familiar with parsing— may be found in the
parsing of complex textual input specified by a CFG. We
have a choice: we can derive a complex push-down automaton
[1] and implement it as such or we can write our parser
using recursive descent [13].1 The recursive descent parser
will correspond clearly to the grammar and hence be far
more maintainable as the grammar changes. By using parsing
combinators [9], we can make the correspondence between
the grammar and the parser quite transparent.

What do we mean by “inversion of control”. Really it
means that instead of high-level code calling low-level code,
we do it the other way around. [5] Low-level code calls
the high-level code. In the case of UIs the high-level code
is the application-specific code, while the low-level is the
UI framework, which is a reusable library. To use the UI
framework we (the application programmers) register various
event handling routines with an instance of the framework.
Then the high-level code hands control off to a routine called
the “event loop”; that’s typically the last thing the main
program does. The event loop waits for an event to happen
then it calls any registered handlers —this is where the low-
level code calls the high-level code— then it waits again, and
so on. Inversion of control is sometimes called the Hollywood
Principle as in “don’t call us, we’ll call you”. Another name
for it is “event driven” UIs.

In the rest of this paper I will advocate for taking back
control. I’ll call this style “upright control.” We might even
call this the Matthew 7:7 principle: “Ask, and it shall be given
you.”

Furthermore, I will present a simple library called Take
Back Control (TBC) that provides a way to write UIs in

1There are other choices. One is to use a parser generator to convert the
CFG to a push down automaton automatically. I’ll ignore this choice for
now, although when I started this project, I was thinking along the lines
of creating a parser generator suitable for UIs. As it developed, a simpler
solution emerged.

an upright style on top of some underlying framework using
inversion of control.

II. SPECIFICATION OF UIS

It has become common to specify UIs using use cases. [10]
Use Cases provide a structured approach to designing and
documenting system behaviour. They can be read or written
by non-software-professionals.

Here is an example of a set of use cases for a simple web-
based integrated development environment. The UI consists
of two radio buttons used to select a language to edit, a button
to run the current program, a button to resume editing, two
editor controls (one for Java and one for C++) where the user
can edit the text of a C++ or Java program, and an execution
control (called the Teaching Machine), where the user can
step through the program they’ve written. The editor controls
and the execution control are library components and we will
treat them as black-boxes; we will only concern ourselves
with making them appear and disappear at the right times.
So we will only worry about the 4 buttons. Initially only the
two radio buttons are shown.

Select initial language.
• Precondition: Initial state
• Scenario

1) The user selects either the C++ or Java radio button.
2) The system shows the editor for C++ or the editor

for Java, as appropriate and also the Run button.
• Postcondition: Editing

Make edits
• Precondition: Editing
• Scenario

1) The user interacts with the editor for the current
language

• Postcondition: Editing

Change Language
• Precondition: Editing
• Scenario

1) The user select the radio button of the other lan-
guage

2) The system hides the current editor and shows the
other

• Postcondition: Editing

Run
• Precondition: Editing
• Scenario

1) The user selects the Run button
2) The system disables both radio buttons and hides

the editor for the current language
3) The system shows the Teaching Machine and the

Edit button.
4) The user interacts with the Teaching Machine.
5) The user selects the Edit button

6) The system enables both radio buttons, hides the
Teaching Machine and the Edit button, and shows
the editor for the current language

• Postcondition: Editing
We might supplement the use-case model with a table

showing the state (enabled, disabled, hidden) of each control
for each of the five conditions. This would mean there is no
need to specify hiding, enabling, and showing in the use case
model

The ordinary methodology to go from a set of use cases to
code would go through some sort of state machine design. For
the simple UI specified above, the state machine apple would
not fall far from the use case model tree, but as the use case
model gets more complicated, especially as scenarios become
longer and more complex, the number of states quickly goes
up. Next we turn the state machine into code. The connection
between the code and the original set of use-cases is now very
tenuous. The logic of the UI is now distributed across an
amorphous set of event handling routines that communicate
using shared data. The original hierarchical structure of the
use cases is lost. There is no subroutining of state machines,
so we can not bring abstraction to the rescue.

Our intention is to be able to write code that closely
matches our use-case model. In particular we would like to
be able to write something like this.

function initialState() : Process〈Triv〉 { return
await(click(langButton[CPP]) && unit(CPP)

‖ click(langButton[JAVA]) && unit(JAVA)) >=
function(lang : Int) { return

showEditor(lang) >
editingState(lang) ; } ; }

function editingState(lang : Int) : Process〈Triv〉 { return
await(change(lang) ‖ run(lang)) ; }

function change(lang : Int) : GuardedProcess〈Triv〉 { return
click(langButton[1-lang]) &&
hideEditor(lang) >
showEditor(1-lang) >
editingState(1-lang) ; }

function run(lang : Int) : GuardedProcess〈Triv〉 { return
click(runButton) &&
hideEditorPane() >
showTM() >
await(click(editButton) && skip()) >
showEditorPane() > editingState(lang) ; }

III. TAKE BACK CONTROL

My approach to taking back control is to use a domain-
specific language (DSL) for UIs. In this case the (DSL) is
embedded in another language. The host language is Haxe
[4], which was chosen for several reasons: In contrast to
JavaScript, it is strongly typed; this aids software design by
automatically spotting superficial errors, thus allowing the

engineer to concentrate on avoiding deeper errors. It supports
generic classes [11]. It compiles to JavaScript, which allows
us to use it for developing the client side of web-applications.
It can be compiled to other languages too including Java and
C++, which allows the library to be used for applications
where JavaScript is not appropriate. It supports operator over-
loading. It supports lambda expressions with lexical scoping.2

The library or DSL —take your pick— is called Take Back
Control, TBC for short.

A. Processes

A fundamental type in TBC is that of a Process〈A〉. This
type represents computations that compute values of type A.
For example if p is a Process〈Int〉 it is an object that can
compute a value of type Int. Now to initiate execution of our
process, we can use its go method, which takes a function as
an argument. For example we could write

p.go(λ(x : Int){trace(x); }) (1)

Once the process has finished executing, the function is called
with its result, so in this case the trace function3 will be called
with the result of executing process p.

A simple example of a Process〈A〉 object is unit(x), where
x is of type A. This process immediately computes x. Thus

unit(42).go(λ(x : Int){trace(x); })

is the same as trace(42).
At this point you may be wondering how a process differs

substantively from a function. I.e., how does (1) differ from
trace(f()) where f is a function that computes the same value
as p produces? The difference is that a process may require
time and interaction to produce its result, but the go method
returns immediately. For example, as we will see soon,

var p = await(click(b) && skip()) > pause(1000) > output;

p.go(λ(x : Triv); {})

completes immediately, but it has the side effect of enabling
a button b such that, when it is clicked, the process output
is executed 1s later. In the next sections we will look at the
meaning of constructs such as >, &&, await, click, and pause.

B. Composing processes

We can compose processes by piping the result of one into
another. For example, suppose p is of type Process〈A〉 and
f is a function of type A → Process〈B〉, then p >= f is
a Process〈B〉. Of course it executes by first executing p and
then executing f(x) where x is the value computed by p. The
implementation is simple: p >= f is an object q whose go
method is implemented by

q.go(k) = p.go(λ(x : A){f(x).go(k); })

2An example of a Haxe lambda expression can be found on the last three
lines of function initalState at the end of the previous section. At times, to
save space, I will write λ in place of the Haxe keyword function.

3trace is a Haxe library function that outputs its argument.

If you know about monads [12], you might recognize that
>= this is a “bind” operation, also known as “flatMap”.
Together >= and unit form a monad meaning they obey all
the laws one would expect a monad to obey.4 I won’t discuss
monads more in this paper.

Often the result of p is not needed. When it is not, we
can abbreviate p >= λ(x : A){return q; } by p > q. This
is essentially the sequential composition operator: do p and
then do q.

To achieve side-effects the process exec(f) calls function
f with no arguments. Thus exec(f).go(k) = k(f()).

We can also combine processes in parallel;

par(p, q)

is a process that computes a pair of results. The actions of
p’s and q’s executions are interleaved in an arbitrary fashion.
It should be noted that this form of parallelism involves no
true concurrency; all actions are executed by the same thread.
Actions are bounded by points where the processes wait, as
discussed in the next section.

Another way to achieve parallelism is to use the fork
method, which starts a new process execution, but does not
wait for it to finish. We have

fork(p) = exec(λ(){p.go(λ(a : A){}); return null; })

Again there is no true concurrency. The forked processes ac-
tions are interleaved with the actions of other active processes.
There is no join mechanism, but it can be simulated using a
channel.

C. Guards, guarded processes, and waiting

A guard is an object that represents a category of events.
For example, if b represents a button on a web page, click(b)
is an object of type Guard〈Event〉 where Event is the type of
HTML event objects. The click(b) object represents clicks on
button b.

We can combine a guard g : Guard〈E〉 with a function
f : E → Process〈A〉 to make guarded process g >> f
of type GuardedProcess〈A〉. This guarded process can only
execute when an event occurs.

If m is a guarded processes of type GuardedProcess〈A〉,
then await(m) is a process of type Process〈A〉. This pro-
cess executes by waiting until an appropriate event oc-
curs and then executing the guarded process. For example,
await(click(b) >> f) is a process that waits until button b is
clicked and then executes process f(e), where e is the event
object for the click.

Guarded processes can be combined so that m ‖ n
represents a choice between the two guarded processes. For
example, if b0 and b1 are two different buttons, we can

4Haskell programmers might wonder why I used >= for bind rather than
>>= as in Haskell. The reason is that Haxe only allows existing operators
to be overloaded.

TABLE I
SUMMARY OF OPERATIONS

Meaning Type Syntax Alternative Syntax

Launch process p. Void p.go(h)

Do p and then do q. Process〈B〉 p > q p.sc(q)

Do p, then do f(x), where x is the result of p. Process〈B〉 p >= f p.bind(f)

Do p and q in parallel. Process〈Pair〈A,B〉〉 par(p, q)

Do p in parallel. Process〈Triv〉 fork(p)

Make a guarded process that does p when fired. GuardedProcess〈A〉 g && p g.andThen(p)

Make a guarded process that does m(e) when fired,
where e represents information about the event.

GuardedProcess〈A〉 g >> m g.guarding(m)

Make a choice between guarded processes. GuardedProcess〈A〉 gp0 ‖ gp1 choose(gp0, gp1)

Wait for an event, then execute a guarded process. Process〈A〉 await(gp)

Output on channel c. Guard〈A〉 c.out(x)

Input from channel c. Guard〈A〉 c.in()

Variables above have the following types: p : Process〈A〉, h : A → Void, q : Process〈B〉, f : A →
Process〈B〉, g : Guard〈E〉,m : E → Process〈A〉, gp : GuardedProcess〈A〉, c : Channel〈A〉, x : A

represent a choice between them by.

await(click(b0) >> f0

‖ click(b1) >> f1

‖ timeout(500) >> f2)

The final guard represents 500ms passing and always pro-
duces null. So, if no button is clicked within 500ms, f2(null)
will be executed.

Often the information produced by an event is not needed.
We can write g && q to mean g >> λ(e : E){return q; }.
The pause(n) process used above is simply a shorthand for

await(timeout(n) && skip())

where skip() is a shorthand for unit(null).
At this point the code at the end of Section II should make

sense. One thing you might wonder about is what happened
to the “Make edits” use case and the line in the “Run” use
case that says “the user interacts with the Teaching Machine”.
Since these components are reused rather than being written
using TBC, they are written in an event driven manner and
the user can use them whenever they are visible. This is an
example of TBC playing well with legacy components.

D. Communication

Processes can participate in communication events pat-
terned after CSP [8]. Given a channel c : Channel〈A〉
and a value a : A, c.in() is a Guard〈A〉 that receives a
communication, and c.out(a) is a Guard〈A〉 that outputs value
a.

Communication is synchronous in that both input and
output guards need to be enabled at the same time in order for
either one to happen. There is no buffering. Communication

involves two executing processes, that is it is point to point
and not broadcast.

More complex communication mechanisms can be build
on top of this simple one.

IV. CONCLUSIONS, RELATED AND FUTURE WORK

You can see from the example at the end of Section II that
the combinators presented above allow the control portion of
UIs to be written in an “upright” rather than “inverted” style.
The consequence of this is that we can use familiar structured
control constructs to create a structured program that tells a
story, just a use cases tell a story. Perhaps most importantly
we can name parts of that story, allowing us to use procedural
abstraction, i.e. subroutines, to structure the program.

Table I summarizes the operations. As the table shows,
where operator overloading has been used, an alternative
syntax is available; this allows the library to be used even
when the application layer is written in a language other than
Haxe, but which Haxe can be translated into, for example
JavaScript or Java.

The ideas in this paper come from many sources: Monadic
parser combinators [9], process algebras such as CSP [8],
Scala’s and Aka’s actors [7], continuation passing style [6],
and so on.

This is only a preliminary report. There is much work to
be done yet. Channels need to be implemented. There needs
to be a way to filter events based on predicates. Perhaps
there should be a way to disable guarded commands. Com-
munication with servers (e.g. XmlHttpRequests) and other
asynchronous IO needs to be implemented.

REFERENCES

[1] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing,
Translation, and Compiling, volume 1. Prentice Hall, 1972.

[2] Noam Chomsky. On certain formal properties of grammars. Informa-
tion and Control, 2:137–167, 1959.

[3] P. T. Cox, F. R. Giles, and T. Pietrzykowski. Prograph: a step towards
liberating programming from textual conditioning. In IEEE Workshop
on Visual Languages, pages 150–156, 1989.

[4] Benjamin Dasnois. haXe 2. Packt, 2011.
[5] Martin Fowler. Inversion of control. http://martinfowler.

com/bliki/InversionOfControl.html accessed October
2015, June 2005.

[6] Jr. Guy Lewis Steele and Gerald Jay Sussman. Lambda the ultimate
imperative. A. I. Memo 353, M.I.T., 1976.

[7] Philipp Haller and Martin Oderski. Event-based programming without
inversion of control. In Proceedings of the 7th Joint Conference on
Modular Programming Languages, number 4228 in LNCS, pages 4–
22. Springer-Verlag, 2006.

[8] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1994.

[9] Graham Hutton and Erik Meijer. Monadic parsing in Haskell. Journal
of Functional Programming, 8(4):437–444, 1998.

[10] Ivar Jacobsen, Grady Booch, and James Rumbaugh. The Unified
Software Development Process: The Complete Guide to. Addison-
Wesley Professional, 1999.

[11] Martin Oderski and Philip Wadler. Pizza into Java: Translating theory
into practice. In Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 146–159.
ACM, ACM, 1997.

[12] Philip Wadler. The essence of functional programming. In Proceedings
of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1–14. ACM, ACM, 1992.

[13] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice
Hall, 1976.

