
—1—

TEACHING COMPUTER PROGRAMMING WITH PROGRAM ANIMATION

Theodore S. Norvell and Michael P. Bruce-Lockhart
Electrical and Computer Engineering

Faculty of Engineering and Applied Science
Memorial University

St. John’s, Newfoundland and Labrador, Canada A1B 3X5
theo@engr.mun.ca and mpbl@engr.mun.ca

Abstract
The Teaching Machine is a software system for ani-

mation of computer programs. It allows the instructor in
the classroom or the student on their own to single step
through computer programs written in C++ or Java
while observing the effect of each step on the state of a
virtual machine. The state of the machine is represented
in a number of ways including a presentation of the cur-
rent state of evaluation of an expression, the state of
memory in terms of bits or symbolic values, a box and
arrow view of pointer based data structures.

We report on recent developments in the Teaching
Machine and on experience in the classroom.

Keywords: Program Animation, Teaching Machine,
Computer Education.

1. INTRODUCTION
Students in early programming courses need to learn a

conceptual model of program execution. That is they
need a mental model of program state and a model of
how that machine state is affected by the various state-
ments, operations, and declarations within a computer
program.

 Proceedings of the 2004 Canadian Conference on
Computer and Software Engineering Education,

Copyright ©2004 retained by the authors.

Some students get this conceptual model quickly and
accurately from experience with programs in homework
assignments or from reading the text and listening to the
instructor. However, most instructors know that not all
first-time students develop useful conceptual models
easily or even at all.

We speculated that by showing a graphical represen-
tation of the program state and showing students how
this evolved over time, under control of the execution of
the associated program, the students would more easily
form the appropriate mental models, The model can then
be applied to learning new concepts: the mental model of
execution, built while learning about if statements, can
be applied when learning about while statements; the
mental model of data structuring, built while learning
about arrays, can be applied when learning about objects.
These mental models could then apply to operational
reasoning about their own programs as well as the exam-
ples that they have seen.

To test this hypothesis—and in hope of creating
something useful for ourselves and for others—we de-
veloped a program animation system: the Teaching Ma-
chine.

An earlier paper [1], introduced the Teaching Ma-
chine; in the present paper we focus on the experience
with the Teaching Machine in the classroom, on its de-
sign, and on recent improvements in language coverage.

—2—

2. OUTLINE
The remainder of the paper is organized as follows.

Section 3 reviews program animation with the Teaching
Machine. Section 4 discusses the integration of the
Teaching Machine with pedagogical web-sites. Section 5
recounts recent experience with the class-room use. Sec-
tion 6 explains the architecture and design of the Teach-
ing Machine, while Section 7 explains the extent to
which it can handle the C++ and Java languages.

3. PROGRAM ANIMATION WITH THE
TEACHING MACHINE

By program animation we mean that we create a
graphical representation of the state of the computer. The
execution of the program creates an animation in the
sense of a series of snap-shots of the machine/program
state.

Fig. 1 shows a snap shot of the Teaching Machine as
it would typically be seen by a student in their first
course in computer programming. We will explain the
various “subwindows” shown in Fig. 1.

3.1. Source Code
To the left is the source code of a program written in

C++. The line currently being executed is high-lighted.

3.2. Expression Evaluation
In the upper right, in the subwindow titled “Expres-

sion Engine,” we see an expression which is partially
evaluated. This partially evaluated expression is visually
coded: parts that have been evaluated to values are
shown in red; parts that have been evaluated to refer-
ences are shown in blue, the next operation to be evalu-
ated and its operands are underlined.

3.3. Symbol Table
Below the expression engine is a representation of the

currently relevant part of the symbol table, showing the
correspondence between variable names and addresses.
When in the course of expression evaluation a variable
needs to be converted to a reference, the corresponding
line in the symbol table is high-lighted.

Of course in a compiled language like C++, there is
no run-time representation of the symbol table, except
perhaps for debugging purposes. However we find that
including this aspect of the compiler state in the run-time
model is useful for beginning students. As students ma-

ture in their understanding, we expect that this blending
of compile-time and run-time concepts will be under-
stood as such.

3.4. Memory
In the lower right is a subwindow labelled “Memory”.

This shows the mapping of addresses to variable values.
Memory is shown at a level of abstraction suitable for
students: ints are shown in decimal, chars as glyphs.
Structured variables such as arrays, structs, and class
members can be expanded or contracted to show or not
show their components.

Pointers are represented as decimal numbers and ref-
erences as the name of the variable they represent. Mem-
ory can also be shown in terms of bits, which can be use-
ful for showing that pointers and references really share
the same representation. Sometimes the best way to illus-
trate an abstraction is to break it.

When a location in memory is about to be accessed,
either for reading or writing, the item in the “Memory”
subwindow is highlighted.

As shown in the figure, “Memory” actually corre-
sponds to the stack (local memory). In more advanced
courses, the stack, heap and static memory are all tracked
separately.

3.5. Other Displays of State
In the standard views of memory, pointers are shown

as addresses (in decimal) and references are represented
by the name of the variable being referenced. An alterna-
tive view of memory is shown in the Linked View win-
dow, illustrated in Fig. 2 and Fig. 3. The linked view
shows stacked data on the left and heap data to the right.
Pointers and references are shown as arrows pointing to
the box representing the data item they point to.

3.6. Control of Execution
The program can be stepped at a variety of levels of

granularity. Various buttons and menu items allow con-
trol of the Teaching Machines execution. One can

• “Go Forward” Step to the next expression
evaluation step. An expression evaluation
step is the lookup of a variable address in the
symbol table, the lookup or storage of a
value in memory, the evaluation of a single
operator, or conversion. Each step is illus-
trated in the Expression Engine.

—3—

• “Step into” Step to the next expression,
which might be within a called subroutine.

• “Step over” Step to the next expression,
skipping over any subroutine calls.

• “Go to cursor” Step to a user selected line.

• “Go back” Undo the last stepping command.
Undo is limited only to the current program
execution.

The “Go back” command can be particularly useful
for students who want to know “What just hap-
pened?”. They can review a previous state or replay a
stage of execution again, perhaps at a finer level of
granularity.

3.7. Program animation and debugging
From a technical standpoint, the Teaching Machine

bears resemblance to a debugger. However the intended
audience and purpose is quite different. A debugger is
intended for a professional software engineer who al-
ready has a good understanding of programming. The
Teaching Machine is intended to help learners to build
effective mental models of programming. The linked-
view gives an example of this. In a debugging context,
the linked-view would be hopelessly space consuming
and would require support for navigation through struc-
tures too big to fit on the screen. In the Teaching Ma-
chine, the linked view is only intended for small exam-
ples and works quite well.

4. INTEGRATION WITH THE WORLD
WIDE WEB

Inasmuch as the Teaching Machine is written in Java
and can therefore be run as an applet it seemed natural to
embed it directly into teaching web pages. In the first
instance, these were conceived of as tutorial pages to
help students who either were taking a traditional course
and needed extra help, or who needed to brush up on
their understanding. The process of creating those first
pages quickly convinced us that more than just the
Teaching Machine was needed.

A major shortcoming of HTML was the difficulty of
displaying code examples well on a web page. What we
felt was needed was a number of authoring aids aimed at
instructors of programming. Thus was born a second
tool.

WebWriter++ is a small authoring system written in
Javascript that allows instructors, working with any

HTML editor, to create web pages for programming
courses easily. Its most important feature is that it allows
example C++ and Java source files to be dynamically
retrieved across the net and displayed on a web page.
The examples can be prepared separately, compiled and
debugged, as well as being re-edited later on. The exam-
ples are lexed and displayed as they would be in a pro-
gram editor, with keywords, comments, and constants all
marked. By simply changing the site stylesheet, the in-
structor can match their appearance to whatever program
editor happens to be in use in the course.1

Further, using a simple markup system embedded in
comments in the code, the instructor can select only a
portion of the code for display. For example, we com-
monly show a single function, discuss it, then show its
calling context and discuss that. If the person viewing the
page wants to run the example, WebWriter++ provides
buttons for running the example in the Teaching Ma-
chine, as well as possibly viewing a video of the example
being run in the Teaching Machine, if one is available.
Since exactly the same source file is displayed on the
web page as is loaded in the Teaching Machine, there is
no problem with keeping examples in sync. These but-
tons can be seen on the WebWriter++ page in Fig. 4.

The authoring system includes a number of other fea-
tures—indeed, it is used as a test bed to try a variety of
techniques for effectively teaching via the web. For ex-
ample one can roll the mouse pointer over a variable and
see its scope illuminate in the code.

5. EXPERIENCE WITH CLASSROOM
USE

In the fall of 2002 we started to integrate the Teaching
Machine directly into the class notes for our Advanced
Programming course—the second programming course
of Memorial University’s ECE programme. For years the
instructor (Bruce-Lockhart) lectured from transparencies,
with the Teaching Machine being turned to from time to
time. All notes were migrated to HTML using Web-
Writer++ and examples were integrated directly into
them. The notes were then projected to the classroom
and printed versions made available to the students. In
2002, the conversion process was carried out while the
course was being taught, so that notes could not be made
available all at once. Moreover, the projector was of suf-
ficiently low luminance that all the lights had to be
turned out in the lecture hall. Nevertheless, students were
guardedly positive.

1 The Teaching Machine also allows appearance to be customized.

—4—

In fall 2003 the students were able to get a bound
copy of the notes on day one as well as a CD of the web-
site. And the course was moved to a new room with a
new projector that enabled normal ambient lighting.

An unlooked for side effect was that the instructor, no
longer in the dark and not chained to a board or an over-
head, was able to stroll around the room, laser pointer in
hand, and engage with students in a much more direct
fashion than had been possible before. The course was
far more fun to teach than it had been in the past. The
students liked it as well.

The Chair for Electrical & Computer Engineering,
who conducted exit interviews with our third term stu-
dents, somewhat ruefully confided to the instructor that
they had said the course was “perfect” and that even the
ones who didn’t like programming “could not conceive
of the subject being taught any better.” While such praise
is gratifying, what had changed was not the instructor but
the first full integration of the Teaching Machine into the
course.

 Formal teaching reviews have just been received.
The instructor’s approval rating has gone up significantly
(from 4.15 before the integration to 4.6). In addition,
optional comments were almost uniformly positive. All
comments received about the Teaching Machine and/or
the notes were positive except two (which made com-
plaints about content not presentation). Several students
said the Teaching Machine should be used in our earlier
course, and in fact we are in the process of converting
that course over, even as this is written.

6. SOFTWARE ARCHITECTURE AND
DESIGN

Figure 5 shows the software architecture of the
Teaching Machine. It can be viewed as consisting of an
executive layer and three subsystems

• The Executive layer handles the main frame
and menus of the Teaching Machine. It also
mediates between the Display System and
the Virtual Machine.

• The Language Stack deals with all language
dependant aspects. Parsing is done with a re-
cursive descent parser generated by JavaCC
[2]. The Parser and Analyser form a com-
piler which produces a graph-structured rep-
resentation of the program. The nodes of
these graphs are instances of classes from the

AST2 layer. The AST classes not only repre-
sent the structure of programs, they also con-
tain the behaviour of the languages various
operations and data-types. At run-time data
is represented by “Datum objects” belonging
to classes drawn from the Datum layer.

• The Virtual Machine consists of an Evalua-
tor and a Virtual Machine State. The Virtual
Machine State represents the state of the vir-
tual machine at run time. It contains all the
memory and various collections of Datums
and various stacks, the most crucial of which
is a stack of Evaluations.

Each Evaluation represents the partial execu-
tion of one expression or function. Each
evaluation contains the graph representing
the expression or function body, optionally a
selected node, and a partial labelling of the
nodes in the graph with objects. In the case
of expressions, nodes are labelled with refer-
ences and data values; as the expression is
evaluated the labelling propagates from the
leaves to the root. At run-time, the Teaching
Machine advances by selecting a node in the
current graph, if none is selected, and other-
wise asking the currently selected node to
execute one execution step.

The Evaluator’s main job is to interpret the
various user commands so that the state is
driven forward just the right amount.

• The Display System implements most of the
Teaching Machine’s look. The Display En-
gine converts the virtual machine state to
images on the screen, while the Subwindow
layer provides a layer on top of Java’s AWT
packages to provide windows within win-
dows.

The original language subsystem supported a very
simple subset of C++ [1]. The front-end contained only a
parser, so all analysis was postponed to run-time. This
arrangement was fine for the simple subset supported,
but was too limited for much of C++. For example com-
piler generated methods could not be supported in any

2 AST abbreviates Abstract Syntax Tree. However this terminology

reflects an early language stack in which there was no analyser and all
analysis was done at run time. For example the “<<” operator of C++
was always represented by the same AST class, regardless of whether it
represented a shift or an output command. In more recent language
stacks, extensive compile-time analysis is done and the AST code is
really a graph-structured intermediate code.

—5—

reasonable way. Furthermore, as analysis was being done
at run time, the AST nodes (which encapsulate run-time
behaviour) could not be language independent.

We therefore embarked on a complete reimplementa-
tion of the language subsystem with the following goals:
Better C++ language coverage, close to complete Java
coverage, proper compile-time analysis, lower-level and
simpler AST code, and extensive sharing of code be-
tween the Java and C++ language stacks. Each layer of
the language stack is split into three Java packages: one
for the C++ implementation, one for the Java implemen-
tation, and one for classes used in both implementations.
At the AST layer the majority of the code is common.

Throughout the design, design patterns [3] are used
extensively. Two examples are given here. Compilation
makes extensive use of the Command pattern; as each
operator is encountered, a code generation command is
looked up based on the operator and the operand types.
At run time, the Abstract Factory pattern is used to re-
cursively generate datum objects from the trees repre-
senting types; type trees are factories for datum trees.

7. LANGUAGE COVERAGE
As can be seen from Table 1, a reasonable “teaching

subset” of C++ is currently covered however, there are
some major limitations, so one can not expect every
teaching example to run, nor for students in more ad-
vanced classes to run all their own code.

Our Java implementation is nearing the point of us-
ability in the class room. Our aim for Java is to cover all
the language and to create a bridge to the Java libraries
so that user code can extend and use library classes.

8. CONCLUSIONS
Does the Teaching Machine help students to build ef-

fective mental models of program operation? We have
no direct evidence, but we do have evidence that its use
has helped to ease what is often a difficult subject for
many students.

 Animations have been shown to be helpful in self-
tutorial situations [4,5], under the right circumstances.
We have used the Teaching Machine mainly as a tool in
the class-room while making it available for students to
use for self-study. Our experiences have been very posi-
tive, especially when the use of the Teaching Machine is
seamlessly integrated into the course notes and lectures.

Table 1 C++ Language Coverage

Currently supported

• All primitive types and operators

• Functions definitions and function
calls

• Most statements

• Variable declaration

• Class declarations

• Compiler generated members

• #include directives

• Some library

Anticipated

• Exceptions

• User defined conversions

• Virtual functions

• Namespaces

• In-place function member definition

• Calling destructors

• Complete preprocessing

• Multiple compilation units

• More library

Not anticipated

• Templates

Acknowledgements
Much of this research was carried out under a grant

from the Office of Learning Technology, Department of
Human Resources and Development.

We are greatly indebted to Derek Reilly for his work
on the new Language Stack. Derek deserves a medal for
Code Heroism.

We would also like to thank the Faculty of Engineer-
ing at Memorial University for supporting new teaching
methods, and providing us a working environment.

—6—

References
[1] M. P. Bruce-Lockhart and T. S. Norvell, “Taking the

hood off the computer: Program animation with the
Teaching Machine,” Canadian Conference on Elec-
trical and Computer Engineering, Halifax, N.S.,
2000.

[2] S. Viswanadha and S. Sankar , “JavaCC”,
https://javacc.dev.java.net/, 2003.

[3] E. Gamma, R. Helm, Ralf Johnson, John Vlissides,
Design Patterns. Addison-Wesley, 1995.

[4] R. Ben-Basset Levy, M. Ben-Ari, P. Uronen, “The
Jeliot 2000 program animation system, Computers &
Education, vol. 40, pp. 1—15, 2003.

[5] T. Ellis, “Animating to build higher cognitive under-
standing: A model for studying multimedia effective-
ness in education,” J. of Engineering Education, vol
93, #1, pp. 59—64, 2004.

Figure 1 A First Course Example

—7—

Figure 2 Linked View applied to objects on the heap

Figure 3. The linked view applied to arrays

—8—

Figure 4 WebWriter++

—9—

Parser

Analyser

AST

Datums

Calls

Produces

Produces

Virtual
Machine State

Evaluator Display
Engine

SubWindow

Steps

Steps

Modifies

Contains

Displays

Builds on

Executive

Language
Stack Virtual Machine Display System

Invokes Commands Refreshes

Figure 5 Main components and relationships

