
International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

1

Analysis of inner-loop mapping onto Coarse-

Grained Reconfigurable Architectures using

Hybrid Particle Swarm Optimization

Rani Gnanaolivu, Theodore S. Norvell, Ramachandran Venkatesan

Electrical and Computer Engineering

Memorial University of Newfoundland

St. John’s, NL, Canada A1B 3X5

{ranig, theo, venky}@mun.ca

ABSTRACT

Coarse-Grained Reconfigurable Architectures (CGRAs) have gained currency in recent years

due to their abundant parallelism and flexibility. To utilize the parallelism found in CGRAs, we

propose a fast and efficient Modulo-Constrained Hybrid Particle Swarm Optimization

(MCHPSO) scheduling algorithm to exploit loop-level parallelism in applications. In this paper,

we show that Particle Swarm Optimization (PSO) is capable of software pipelining loops by

overlapping placement, scheduling and routing of successive loop iterations and executing them

in parallel. Our proposed algorithm has been experimentally validated on various DSP

benchmarks under two different architecture configurations. These experiments indicate that the

proposed MCHPSO algorithm can find schedules with small initiation intervals within a

reasonable amount of time. The MCHPSO scheduling algorithm was analyzed with different topologies

and Functional Unit (FU) configurations. We tested the parallelizability of the algorithm and found that it

has nearly linear speedup on a multi-core CPU.

theo
Text Box
Published in IJoOCI vol. 2 no. 2, 2011 (c) IJoOCI

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

2

Keywords: Coarse-Grained Reconfigurable Architectures; Particle Swarm Optimization;

Modulo Scheduling; Loop-level parallelism; Mutation Operator; inner loop; Mapping.

Received Month Day Year; Revised Month Day Year; Accepted Month Day Year.

0. Introduction

Reconfigurable systems (Abielmona, 2005) have drawn increasing attention from both academic

and commercial researchers in the past few years because they combine flexibility with

efficiency and upgradability (Todman, Constantinides, Wilton, Mencer, Luk, & Cheung, 2005).

Among reconfigurable architectures, many Coarse-Grained Reconfigurable Architectures

(GGRAs) have been proposed as an alternative to FPGA-based systems (Mei, Vernalde, Verkest,

Man, & Lauwereins, 2003). CGRAs consist of programmable coarse-grained Functional Units

(FUs) which support a predefined set of word-level operations; a programmable interconnection

network; a configuration memory; and a controller (Vassiliadis & Soudris, 2007). Unfortunately

the available parallelism has been exploited by few automated design and compilation tools

(Mei, Vernalde, Verkest, Man, & Lauwereins, 2003).

The massive amounts of parallelism found in CGRAs can be used to map time critical

loops of an application. This can be achieved by Modulo Scheduling (Hatanaka & Bagherzadeh,

2007), which is a software pipelining technique that overlaps several iterations of a loop by

generating a schedule for an iteration of the loop. Modulo scheduling uses the same schedule for

subsequent iterations. Iterations are started at a constant interval called the initiation interval (II).

The time taken to complete a loop of 𝑛 iterations is roughly proportional to II, thus the main goal

of modulo scheduling is to find a schedule with a low as II as possible.

Several heuristic techniques have been tried by researchers in solving the modulo

scheduling problem. In this paper, we propose a modulo scheduling algorithm based on Particle

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

3

Swarm Optimization (PSO). We call this the Modulo-Constrained Hybrid Particle Swarm

Optimization (MCHPSO) algorithm. PSO provides near optimal solutions with fast convergence

and low execution time for various combinatory and multidimensional optimization problems

(Abdel-Kader, 2008). We have used hybrid PSO with mutation operator to decide the placement

and scheduling decisions in CGRAs. The MCHPSO algorithm has been tested on the

benchmarks taken from (Texas Instrument inc, 1995; Park S. W., 2005; VLSI design laboratory,

2002). The benchmarks are derived from applications written in the C programming language. A

shorter version of this paper was published as (Gnanaolivu, Norvell, & Venkatesan, 2010). The

results show that the proposed MCHPSO algorithm finds a valid schedule for the given target

applications in reasonable time, with efficient utilization of resources.

The rest of this paper is organized as follows: An overview of compilation and background is

given in Section 1. Modulo scheduling and PSO related work are discussed in Section 2. Our

proposed PSO-based modulo scheduling algorithm (MCHPSO) is explained in Section 3. The

experiments conducted are discussed in Section 4. Section 5 present the conclusion and future

work.

1. BACKGROUND

In this paper, we propose an algorithm for modulo scheduling of loops to be mapped onto

CGRAs. At the same time as it schedules, the algorithm places−assigns operations to FU −and

routes− finds paths through space and time for data.

 Each source program is converted from an imperative program to a Data Flow Graph (DFG).

The given Target Architecture (TA) is represented by a graph containing all the necessary

information such as the number of resources, capacity and interconnections as well as other

specific information for each resource. The generic TA graph representation was designed to

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

4

allow a wide range of architectures. The TA is replicated for many time cycles to form the

Routing Resource Graph (RRG), an internal time-space graph representation.

 The mapping algorithm MCHPSO maps each node of the DFG to a node of the RRG and

each edge of the DFG to a path in the RRG. The generated scheduled code of the loop exhibits a

high degree of Instruction Level Parallelism (ILP).

1.1 MOTIVATIONAL EXAMPLE

Figure 1 illustrates the compilation flow with a motivational example. Consider the architecture

configuration shown in Figure 1 (a), and the DFG represented in Figure 1 (c). The architecture

components in Figure 1 (a) are Input port (I), Functional Unit (FU), Write Port (WP), Read Port

(RP), Register File (RF). Figure 1 (b) shows an RRG created by replicating the TA across two

time cycles. The final embedding of DFG in the RRG is shown in Figure 1 (d). The II for this

example is 2.

The schedule produced by the algorithm maps each operation to a functional unit and a time

and maps each edge in the DFG to a path in the RRG. Thus we are essentially searching for a

graph homeomorphism (LaPaugh & Rivest, 1978), however with a couple of wrinkles. First, a

new iteration starts every II cycles, any node or edge used in cycles 𝑖 normally must not be used

for another purpose in any cycle 𝑗 such that 𝑖 ≡ 𝑗 (modulo 𝐼𝐼). Second, some edges or nodes in

the TA may have capacities that exceed1. For example a register file may hold more than one

word of data and it may be capable of multiple reads or writes in one cycle. Thus the real

constraint is that for each TA node or edge 𝑟 and for each 𝑡 from0 𝑡𝑜 𝐼𝐼 − 1, the number of DFG

nodes or edges mapped to the 𝑟 in schedule cycles with remainder 𝑡 𝑚𝑜𝑑𝑢𝑙𝑜 𝐼𝐼 must not exceed

𝑟’𝑠 capacity. This constraint is checked with the aid of a modulo reservation table (MRT). The

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

5

columns of the MRT represent the resources of the TA and the rows represent remainder modulo

II. Table 1 shows the completed MRT for the example of Figure 1.

The operation n1 is to be executed in FU1 at time 0, so the FU1 is reserved for all cycles

divisible by II. Once a resource is reserved it will not be available for the other operations in time

cycles that have the same remainder modulo II. The routing path from operation n1 to operation

n2 uses the WP1, RF1, and RP1, which are also reserved in the MRT. The capacity of resources

are given in brackets, otherwise they have capacity of one.

Figure 1. Motivating example a) 2 x 2 target architecture template instance, b) RRG, c) DFG

and d) Final schedule, place and route result.

Table 1. MRT for the DFG in Figure 1 (c)

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

6

1.2 PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995) is an optimization approach

that follows an evolutionary metaphor. It is a population-based search procedure in which

individuals, called particles, changes their positions, or states, with time. Each particle in the

PSO system represents a potential solution to the problem, and at the end of the search, the best

particle will hold the best solution found. The standard PSO is discussed in (Hu, 2006).

In every iteration, the velocity and position of each particle are calculated according to the

expressions given below.

𝑉𝑖+1: = 𝑤 × 𝑉𝑖 + 𝑐1𝑟1 𝐿𝑖 − 𝑋𝑖 + 𝑐2𝑟2(𝐺𝑖 − 𝑋𝑖)
(1)

𝑋𝑖+1 : = 𝑋𝑖 + 𝑉𝑖+1 (2)

where

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖

(3)

𝑖 denotes the current iteration and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 the maximum number of iterations, 𝑋𝑖 denotes the

particle coordinates at 𝑖, 𝑉𝑖denotes the velocity at iteration 𝑖. 𝑐1 ,and 𝑐2 denote the acceleration

constants in the range [0, 1], 𝑟1 and 𝑟2 are random values in the range 0, 1 , 𝐿𝑖 and 𝐺𝑖 denote the

local best particle position and global best particle position at iteration 𝑖 , and 𝑤 denotes the

inertia weight factor with 𝑤𝑚𝑖𝑛 ,𝑤𝑚𝑎𝑥 as the initial weight and final weight.

After calculating 𝑋𝑖+1, we can get the new particle position to search in the next iteration. The

PSO algorithm has the advantages of high speed, stable convergence and robustness; it

parallelizes well and generates good solutions (Abdel-Kader, 2008).

When PSO is compared with Ant Colony Optimization (ACO) (Nonsiri & Supratid, 2008),

PSO shows significant performance in the initial iterations and has the capability to quickly

arrive at an optimal/near-optimal solution. An advantage of PSO over Genetic Algorithm (GA)

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

7

(Chatterjee & Siarry, 2006) is that PSO maintains all the solutions in the search space and

requires less computational effort to arrive at high quality solutions. Since previous research

(Abdel-Kader, 2008), (Chiang, Chang, & Huang, 2006) on PSO shows that scheduling can be

done with PSO, we tried PSO with a hybrid combination of mutation operations for our Modulo

Scheduling problem to avoid premature convergence in PSO algorithm

1.3 TARGET ARCHITECTURE GRAPH

The target architecture consists of a graph of basic components, including Functional Units

(FUs), Register Files (RFs), Column Buses (CBs), and Row Buses (RBs). Similar to the work

done in (Mei, Vernalde, Verkest, Man, & Lauwereins, 2003) and (Dimitroulakos, Galanis, &

Goutis, 2007), our work aims to target a wide range of CGRAs. The ADRES (Mei, Lambrechts,

Verkest, Mignolet, & Lauwereins, 2005) architecture was adopted as the TA for our current

work. We chose ADRES architecture because it has a flexible architecture template and we can

easily map loops onto the ADRES array in a highly parallel way. Furthermore, choosing this

architecture allows direct comparison with the method presented in (Vassiliadis & Soudris,

2007).

 The TA graph (𝑉,𝐸) is formed from a target description file where,

 𝑉 is the set of vertices. Each vertex represents a FU, RF, CB, RB described above.

 𝐸 is the set of edges, indicating the incoming or outgoing edge in the operation. 𝑒 and 𝑒 are

the source and target vertex for edge 𝑒.

Each FU can receive input from various resources of the graph and similarly the output of

each FU can be routed to various destination resources (Vassiliadis & Soudris, 2007). The target

architecture used in the experiments of Section V has both 4x4 instances and 8x8 instances of

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

8

FUs. An example 4x4 instance of target architecture is shown in Figure 2. Only the top row of

FUs, termed as Memory Unit (MU), may be used for load and store operations.

1.4 ROUTING RESOURCE GRAPH

For scheduling, placing, and routing loops onto the target architecture, we employ a time-space

graph called a Routing Resource Graph (RRG). The RRG is obtained from the TA graph

described above by replicating each vertex in 𝑉 for every time cycleϵℕ specifying the

interconnections with edges derived from 𝐸. The RRG is 𝑉 × ℕ,𝑋 ∪ 𝑌 ∪ 𝑍 where

 𝑉 × ℕ – An infinite set of copies of the TA’s vertex set.

 𝑋 edges – Every edge 𝑒 in the TA graph that doesn’t end at a register write port is replicated

across time.

 𝑌 edges – Every edge 𝑒 in the TA graph that ends at a register write port is represented in the

RRG as an outgoing edge from its source in current time cycle to the write port in the next

time cycle. Use of such an edge represents writing to a register (Tuhin & Norvell, 2008).

Figure 2. 4 x 4 target architecture template instance.

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

9

 𝑍 edges – For every RF 𝑟 in the TA graph, we have a set of edges that transmit data from

each instance of the RF to the instance in the next cycle. Use of such an edge represents

maintaining data in a register (Tuhin & Norvell, 2008).

1.5 MODULO SCHEDULING

Modulo Scheduling is a technique for software pipelining loops (Mei, Vernalde, Verkest, Man,

& Lauwereins, 2003). The schedule for each iteration is divided into stages of equal duration, so

that different stages of the successive iterations get overlapped. The number of stages in each

iteration is called the stage count (SC). Modulo scheduling ensures that there are no resource

conflicts as multiple stages execute simultaneously.

1.6 INITIATION INTERVAL

To enforce the modulo constraints, we have to generate a schedule for one iteration of the loop,

such that this same schedule is repeated at regular intervals (Vassiliadis & Soudris, 2007). This

interval is termed the initiation interval (II), essentially reflects the performance of the scheduled

loop. To start the MCHPSO scheduling process, the II is assigned the value of a lower bound

called as minimum initiation interval (MII) and is computed as in (Vassiliadis & Soudris, 2007).

1.7 DATA FLOW GRAPH

The target application program description is analyzed and transformed to find the critical loops

to be mapped to the CGRA. In our work, we have considered only the inner loop body of the

application with no inter-iteration dependence. The loop kernel is rewritten to create a data flow

graph representation with nodes as the set of operations in the loop kernel and arcs as the set of

interconnection edges, indicating the incoming or outgoing edge of the operation (Tuhin &

Norvell, 2008).

2. RELATED WORK

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

10

Software pipelining (Allan, Jones, Lee, & Allan, 1995; Lam, 1988) is used for instruction

parallelism. The idea of software pipelining is to overlap execution of several iterations from the

same loop. Iterations are started at regular intervals of II. After the first few iteration (the

prologue) a repeating pattern of execution (the kernel) is repeated until the final iteration starts.

Finally the pipeline is drained (the epilogue). List scheduling (Beaty, 1994) is a common

approach used to solve the scheduling problem. Some of the approaches carried out in modulo

scheduling of the loop body are discussed below.

The compilation of inner loop bodies for CGRAs has been done with DRESC (Dynamically

Reconfigurable Embedded System Compiler) (Mei, Vernalde, Verkest, Man, & Lauwereins,

2003), a retargetable compiler that is able to parse, analyze, place, route, and schedule C source

code. In this work they propose a modulo scheduling algorithm based on simulated annealing

(Wang, Wu, & Liu, 2001). This method can take a long compilation time for larger loops.

A memory-conscious mapping methodology for CGRA architectures was presented in

(Dimitroulakos, Galanis, & Goutis, 2007) with data reuse capabilities and priority-based list

scheduling algorithm. The resource aware mapping with local RAMs and flexible

interconnection network enables the compiler to map the application. Most iterative modulo

scheduling methods (Llosa, González, Ayguadé, & Valero, 1996; Rau, 1994) compute and

analyze the dependence graph and orders the nodes to be scheduled. The idea of modulo

scheduling is applied with a graph embedding (Heath, 1997) (Newsome & Song, 2003)

technique using an affinity graph heuristic and skewed scheduling space in (Park, Fan, Kudlur, &

Mahlke, 2006). This technique achieves better convergence and faster compilation times with

dedicated register files and sparse network connectivity.

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

11

Some works have shown interest on different aspects in the loop body which are discussed

below. Recurrence aware scheduling (Oh, Egger, Park, & Mahlke, 2009), which considers the

dependence on the same operation while scheduling. Register constrained scheduling (Zalamea,

Llosa, Ayguadé, & Valero, 2004) algorithm discuss the allocation of registers by using different

register file models (Zalamea, J.; Llosa, J.; Ayguadé, E.; Valero, M, 2001). The register

requirements are minimized by a heuristic strategy of hypernode reduction (Llosa, Valero,

Ayguadé, & González, 1995) to shorten loop variant lifetimes without sacrificing performance.

The discrete problem of instruction scheduling has been solved using Particle Swarm

Optimization PSO with the traditional list scheduling algorithm (Abdel-Kader, 2008). Since

there is not much work done to improve the modulo scheduling algorithm with evolutionary

algorithms, we started to try with simple PSO. The scheduling problem is NP-hard and needs a

heuristic approach to find the solution. To avoid local optima from simple PSO and to represent

the scheduling solution, we tried multi-dimensional PSO representation and its hybrid

combination. To analyze the work done in (Gnanaolivu, Norvell, & Venkatesan, 2010), we used

various TA topologies and FU configuration to validate hybrid PSO with mutation operator to

decide the placement and scheduling decisions in CGRAs. In contrast to all the algorithms

discussed, our approach takes the evolutionary process to decide the simultaneous mapping

decisions for all the nodes in the DFG. The proposed algorithm optimizes the routing cost as well

as respecting modulo constraints and data dependence.

3. MAPPING ALGORITHM

3.1 MODULO SCHEDULING WITH MODULO CONSTRAINED HYBRID

PARTICLE SWARM OPTIMIZATION

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

12

Our proposed MCHPSO scheduling algorithm simultaneously searches for a good schedule,

placement, and routing solution for the entire set of operations given in DFG; it avoids the time

consuming sequential search for each operation as done in list scheduling (Mei, Vernalde,

Verkest, Man, & Lauwereins, 2003). In (Mei, Vernalde, Verkest, Man, & Lauwereins, 2003;

Tuhin & Norvell, 2008; Dimitroulakos, Galanis, & Goutis, 2007). Several trials are needed to

find the best schedule for an operation before proceeding to the next operation. In our algorithm,

all the particles search for a complete schedule simultaneously. To efficiently map loops onto the

CGRA, we have adopted the idea of modulo scheduling used in (Mei, Vernalde, Verkest, Man,

& Lauwereins, 2003) along with the combination of two heuristic approaches, PSO and

randomization. From (Abdel-Kader, 2008) and (Chiang, Chang, & Huang, 2006) we note that

PSO could be applied to multidimensional scheduling problems. The application of PSO to

modulo scheduling converges faster but can be caught in a local optimum (Uysal & Bulkan,

2008). To escape the local optima, we have used a randomization method in combination with

PSO.

Figure 3. Mapping DFG to RRG

Procedure ModuloSch_Place_Route (DFG, TA)

begin

 II := MII (DFG)

 dfgList := ComputeASAPandALAP (DFG)

 sortedDFG := sort(dfglist)

 max_schLength := findschLength(sortDFG)

 schSucess := false

 trials :=0

 while !schSucess&& trials<NTRIALS do

 CreateRRG(TA, II, max_schLength)

 schSucess:=MCHPSO(sortedDFG, RRG, II, max_schLength)

 II++

 trials++

 end while

end

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

13

The overall method of MCHPSO to schedule, place and route a loop is explained in Figure 3.

The inputs to the algorithm are TA graph and a DFG. First the minimum initiation interval (MII)

is computed as discussed in the previous section. Second, ASAP (As Soon As Possible) and

ALAP (As Late As Possible) times are calculated for the given DFG. After generating the DFG

and the RRG, the MCHPSO algorithm is executed to schedule, place, and route the loop.

3.2 PARTICLE ENCODING FOR THE PROBLEM

To frame the solution for the scheduling problem by using the particles, we need to consider

various dimensions for each particle, size of DFG, placement of nodes, routing and the schedule

time. To establish "best solution mapping", we have taken each particle position as a mapping of

DFG nodes to RRG nodes and DFG edges to RRG paths.

3.3 MCHPSO

In MCHPSO, inputs are the RRG and the sorted DFG. The number of operations in the DFG is

initialized to the number of nodes, N, for each particle. Each particle in the PSO is given a

random initial value for the place and time of each node in the range of [ASAP, ALAP] that

satisfies the dependence constraint. Once all the particles are initialized, their fitness is calculated

as illustrated in the next subsection. Every particle updates its Local-best (𝐿𝑏𝑒𝑠𝑡) position if the

new fitness is better than the current fitness. Once all the particles have been updated to their best

candidate solution, the global best particle is chosen and its position is denoted by𝑃𝐺𝑏𝑒𝑠𝑡the

global best particle is chosen and its position is denoted by 𝑃𝐺𝑏𝑒𝑠𝑡.

Every particle 𝑖 updates its velocity according to (4). The 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑤𝑎𝑝𝐿𝑖𝑠𝑡 function in (4)

creates a swap sequence (Abdel-Kader, 2008) of the current particle’s (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑖) placed and

scheduled nodes with either from global best position (𝑃𝐺𝑏𝑒𝑠𝑡) or from the local best position

(𝑃𝐿𝑏𝑒𝑠𝑡). Once the new velocity (𝑉𝑛𝑒𝑤𝑖) is generated, the current particle position (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑖)

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

14

is swapped according to the co-ordinates in the 𝑉𝑛𝑒𝑤𝑖 as in (5). Next the mutation operator is

applied to the new particle position(𝑛𝑒𝑤𝑃𝑐𝑜𝑜𝑟𝑑𝑖) is shown in (6). The 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟

function selects a random node of the particle and chooses a random placement and schedule

value and replaces the particle’s current value. Once the mutation is done on the particle, the new

particle coordinates are ready for the next generation of MCHPSO. The particles keep searching

for the best solution in the current II. The pseudo code is shown in Figure 5.

 𝑉𝑛𝑒𝑤𝑖 ∶= 𝐢𝐟 𝐶1𝐭𝐡𝐞𝐧

 𝐶𝑟𝑒𝑎𝑡𝑒𝑆𝑤𝑎𝑝𝐿𝑖𝑠𝑡 𝑃𝐺𝑏𝑒𝑠𝑡 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑖

 𝐞𝐥𝐬𝐞 𝐶𝑟𝑒𝑎𝑡𝑒𝑆𝑤𝑎𝑝𝐿𝑖𝑠𝑡(𝑃𝐿𝑏𝑒𝑠𝑡 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑖)

(4)

where 𝐶1 is an acceleration constant ranges [0, 2].

𝑛𝑒𝑤𝑃𝑐𝑜𝑜𝑟𝑑𝑖 ∶= 𝑑𝑜𝑆𝑤𝑎𝑝 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑖 ,𝑉𝑛𝑒𝑤𝑖 (5)

𝑛𝑒𝑤𝑃𝑐𝑜𝑜𝑟𝑑𝑖 ∶= 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑛𝑒𝑤𝑃𝑐𝑜𝑜𝑟𝑑𝑖 (6)

3.4 FITNESS CALCULATION

The fitness calculation considers multiple objectives from the routing paths produced by

Dijkstra’s shortest-path algorithm (Dijkstra, 1959). The three main objectives considered in our

work are that no resource is overused, that all edges in the DFG are routable, and that few

resources are used to route. The routing cost is computed by accumulating the cost of all RRG

nodes used by the new placement and routing of the operation. The fitness calculation was

designed to penalize particles which overuse resources. Each node in the RRG has a capacity,

base cost (Mei, Vernalde, Verkest, Man, & Lauwereins, 2003), availability, and usage number.

The majority of RRG nodes have a capacity of one whereas a few types of nodes such as register

files have a capacity larger than one.

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

15

4. EXPERIMENT

4.1 SET UP

Procedure MCHPSO (sortDFG, RRG, II, schLength)

begin

for each operation in sortDFGdo

 Initialize Particles

 InitializeMRT(noofFU,II)

end for

repeat NLOOPS times

 for each particle in Particles do

 Find the fitness value fromGetRoutingCost (RRG, particle)

 if the fitness value is better than the best fitnessthen

 Set current fitness value as the new particle best fitness

 end if

 end for

 Find the global best particle

 for each particle do

 Calculate the new particle velocity according to (4)

 Update particle search position according to (5)

 Apply mutation operator for the newPosition (6)

 end for

end while

if validSchedule(bestparticle) then return true

else return false

endif

end

Figure 4. The MCHPSO algorithm

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

16

The scheduling algorithm was written in Java and executed on an Intel Core 2 Duo CPU with 4

GB RAM and a clock speed of 2 GHz. To schedule a loop onto the CGRAs, two main inputs

were required for the scheduling algorithm. The first input is the DFG generated from the

benchmark loops. The second input for the MCHPSO is the CGRA configuration. The TA graph

is created from the TA configuration.

Other than the two main inputs, DFG and TA, MCHPSO requires the following parameters:

the number of particles is 10, the relax-factor for the schedule length is the II of the DFG, 𝐶1 as

one or zero depending on the random generation, the number of trials for each II is one, and the

number of iterations to carry out the algorithm is 20.

Among the various CGRAs discussed in (Vassiliadis & Soudris, 2007), (ADRES)

Architecture for Dynamically Reconfigurable Embedded Systems (Mei, Vernalde, Verkest, Man,

& Lauwereins, 2003) was used for the experiments. The TA consists of two configurations, one

is with a 4 × 4 grid as shown in Figure 2. The second configuration is with 64 FUs of 8 × 8 grid,

which are divided into four tiles. Each tile consists of 16 FUs as same as in the 4 × 4 grid. The

benchmarks used consist of ten programs, which are derived from (Texas Instrument inc, 1995;

Park S. W., 2005; VLSI design laboratory, 2002).

4.2 EXPERIMENT RESULTS

The overall mapping results from MCHPSO of all the selected benchmarks on a 8 × 8 CGRA

configuration is shown in Table 2 where the first column shows the benchmark name, second

column denotes the number of operations in the loop kernel, and the third column shows the

initiation interval (II) at which the loop kernel is mapped. The fourth column shows the

operations per cycle (OPC) which is calculated by (7). The fifth column shows the schedule

density without routing, calculated as in (8). The schedule density without routing considers the

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

17

number of FUs used in the placement. The sixth column shows the schedule density of FU with

routing calculated by (9), where the number of stages is calculated by (10). The schedule density

with routing considers the count of FUs used in the placement as well as in routing of edges. The

seventh column shows the total CGRA utilization percentage, including all the computation and

routing resources in the CGRA used for the scheduling of loop kernel calculated by (11).

𝑂𝑃𝐶 =
𝑁𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝐼𝐼
 (7)

𝑆𝑐𝑕𝑒𝑑𝑢𝑙𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑤𝑖𝑡𝑕𝑜𝑢𝑡 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 = (
𝑂𝑃𝐶

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑈
) ∗ 100

(8)

𝑆𝑐𝑕𝑒𝑑𝑢𝑙𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑤𝑖𝑡𝑕 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 = 𝑛𝑜𝑜𝑓𝑠𝑡𝑎𝑔𝑒𝑠 ∗

𝑁𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 + 𝐹𝑈𝑢𝑠𝑒𝑑𝑖𝑛𝑟𝑜𝑢𝑡𝑖𝑛𝑔

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑈
 ∗ 100

(9)

The eighth column shows the number of stages overlapped, as calculated in (10). The last

column shows the time taken in seconds to schedule the loop kernel. The mapping results show

that the proposed scheduling algorithm MCHPSO utilizes from 31.25% to 79.69% of the total

FUs available in the CGRA. The FU utilization depends on the size of the DFG and the number

of stages of the loop. The largest loop kernels like IDCT_hor (horizontal pass) and FFT are

scheduled within a maximum of 105.89 seconds.

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒𝑠 =
 𝑆𝑐𝑕𝑒𝑑𝑢𝑙𝑒 𝐿𝑒𝑛𝑔𝑡𝑕

𝐼𝐼

(10)

𝑇𝑜𝑡𝑎𝑙𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑡𝑎𝑔𝑒𝑠

∗
𝑁𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 + 𝑡𝑜𝑡𝑎𝑙𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑅𝑒𝑠

𝑅𝑅𝐺𝑠𝑖𝑧𝑒
 ∗ 100

(11)

From the mapping results, it is understood that the higher the number of loop operations, the

larger the routing resources required. Our MCHPSO scheduling algorithm was able to map the

Table 3 shows the overall mapping results from MCHPSO of all the selected benchmarks with a

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

18

4 × 4 CGRA. The first column shows the benchmark name, the second column denotes the

number of operations in the loop kernel, and the third column shows the initiation interval (II) at

which the loop body is mapped. The fourth column shows the schedule density without routing,

as calculated in (8). The schedule density without routing considers the count of FUs used in the

placement. The fifth column shows the schedule density of FU with routing, as calculated by (9).

The routing path value for the fitness function is calculated from Dijikstra’s algorithm to achieve

better convergence and faster compilation times. The last column shows the time taken in

seconds executed on a Intel Pentium M with 1 GB RAM and a clock speed of 1.73 GHz.

From the mapping results, it is understood that the higher the number of loop operations, the

larger the routing resources required. Our MCHPSO scheduling algorithm was able to map the

benchmarks both in 4 × 4 and 8 × 8 CGRA configurations. The II achieved to map the

benchmarks were mostly minimum II or close to it.

4.3 ANALYZING THE USAGE OF FUNCTIONAL UNITS WITH DIFFERENT

TOPOLOGY

 The importance of having flexible interconnections in the FU are studied with various

topologies as displayed in Figure 6. In Figure 6 (a) a mesh topology with four nearest

neighboring FU connections is shown; Figure 6 (b) shows a meshplus1 topology, where it an

enhanced mesh topology with additional interconnections between FUs of one hop; and Figure 6

(c) shows a star topology of eight neighboring FU connections. In a meshplus2 topology each FU

connected to all FUs in the same row and column along with nearest neighboring connections.

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

19

 Table 2. MCHPSO -- overall mapping results for 8 x 8 CGRA

Bench-

Marks

of

ops

II

OPC

Schedule Density

(without routing)

Schedule Density

(with routing)

Total CGRA

Util %

No of

stages

Exe Time

in Seconds

FIR_complex 25 2 12.5 18.75 39.06 12.59 4.00 8.72

Lattice synth 20 1 20.0 29.69 79.69 22.06 10.00 12.58

Volterra 28 2 14.0 21.88 34.38 14.06 3.00 6.87

IIR 36 2 18.0 28.13 62.50 21.14 4.00 12.55

IIR_biquad 35 3 11.7 17.19 31.25 9.25 4.00 16.93

8X8 IDCT_hor 78 3 26.0 40.63 73.44 29.47 5.00 93.11

4X4 FFT 67 3 22.3 34.38 75.52 29.66 5.00 105.89

8X8 FDCT_hor 74 4 18.5 29.69 63.28 18.34 3.00 27.01

8X8 FDCT_Ver 73 3 24.3 37.50 78.13 21.20 4.00 55.67

Table 3. MCHPSO -- overall mapping results for 4 × 4 CGRA

Bench-

Marks

of

Ops
II

ScheduleDensity

(without routing)

ScheduleDensity

(with routing)

Exe

Time in

Seconds

FIR_cplx 25 3 50.00 68.75 0.84

latasynth 20 2 56.25 78.13 0.66

latanal 20 2 56.25 68.75 0.53

Volterra 28 4 43.75 57.81 1.36

IIR 36 4 56.25 78.13 2.17

IIR_biquad 35 5 43.75 61.25 1.77

8X8 IDCT_hor 78 7 68.75 89.29 7.20

4X4 FFT 67 7 56.25 81.25 9.86

8X8 FDCT_hor 74 7 68.75 90.18 6.45

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

20

Figure 6. FU Topology are (a) Mesh topology (b) Meshplus1 topology (c) Star topology

Table 4 shows the comparison of using various topologies for the Functional Units. This

experiment is done on a 4×4 CGRA. The first column shows the two benchmarks taken for

comparison. We have chosen IDCT_hor and FFT benchmarks, because they are not able to

schedule at minimum II. It would be a fair comparison of FU utilization in the previous initial

intervals. The second column shows the minimum II. The third column shows the II tried and

achieved to schedule without any overuse of resources. The fourth column shows the percentage

of FU utilization at placement. The fifth, seventh, ninth, eleventh columns shows the percentage

of FU overuse after scheduling, placement, and routing in mesh,meshplus1,meshplus2 and star

topology. The sixth, eighth, tenth, twelfth columns shows the percentage of FU utilization after

scheduling, placement, and routing in mesh, meshplus1, meshplus2 and star topology. From

row1, row3 and row4 we can understand that the overuse of FUs is reduced when the

interconnections are increased. The best utilization of FUs is achieved in the case of meshplus2

with star topology. When a benchmark has a lot of routing edges, the flexible interconnection

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

21

helps the MCHPSO scheduling algorithm to achieve a valid schedule with no overuse of

resources.

Table 4. Utilization of Functional Unit interconnections with various topologies

Mesh MeshPlus1 MeshPlus2

MeshPlus2 and

Star

Bench-

Marks

Min

II II P O P&R O P&R O P&R O P&R

8X8 IDCT_hor 6

6 81.25 12.50 100.00 7.29 100.00 9.38 100.00 1.04 100.00

7 68.75 0.00 91.96 0.00 90.18 0.00 90.18 0.00 89.29

4X4 FFT 5

5 81.25 28.75 100.00 28.75 100.00 22.50 100.00 20.00 100.00

6 68.75 5.21 100.00 5.21 100.00 2.08 100.00 4.17 100.00

7 56.25 0.00 77.68 0.00 84.82 0.00 84.82 0.00 81.25

4.4 ANALYZING THE USAGE OF REGISTER FILES WITH DIFFERENT

INTERCONNECTIONS

 The utilization of registers in the RFs is studied with different number of RFs and their

interconnections as displayed in Figure 7. Each FU with its own dedicated RF is shown in Figure

7 (a); Figure 7 (b) shows the 4 RFs with each RF shared among four FUs; Figure 7 (c) shows

each FU has a RF and the RF is shared among FUs adjacent in the diagonal directions.

Figure 8 shows the utilization of registers for the various register file topologies. This

experiment is done on a 4×4 CGRA with each register file having four registers, four read and

write ports. The shared 4 RFs topology uses the limited number of registers efficiently, but for

large benchmarks such as the last two benchmarks, 8x8 FDCT_hor and 4x4 FFT, it overuses the

registers nearly 20 to 100%. The shared 12 RFs topology utilizes the registers efficiently when

compared with dedicated RF topology. Therefore, the shared 12 RFs topology works the best for

all the benchmarks with no overuse of registers and efficiently uses the registers.

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

22

Figure 7. FU and RF Topology (a) 12 Dedicated RFs (b) 4 Shared RFs (c) 12 Shared RFs

Figure 8. Percentage of register utilization in different topology

0
20
40
60
80

100
120
140
160
180
200
220
240
260

%
 o

f
re

gi
st

e
r

u
sa

ge

in
 t

h
e

 R
e

gi
st

e
r

Fi
le

Benchmarks

Dedicated (12RFs with 4
regs)
Shared (12RFs with 4 regs)

Shared (4RFs with 4 regs)

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

23

4.5 EFFECT OF VARYING PARTICLE SIZE IN MCHPSO ALGORITHM

To determine how many particles should be used in the MCHPSO scheduling algorithm, we

conducted the experiments by varying the particle numbers in the algorithm. This experiment

was done on an 8 x 8 CGRA in an Intel® Core™ i7-860 Processor with a clock speed of 2.8GHz

utilizing all the four cores.

When we started with five particles, the algorithm wasn’t able to come out of the local

optimum of the best particle’s fitness value. We then tried with ten particles and we were able to

get the valid schedule.

To analyze the speedup of our MCHPSO scheduling algorithm, we compared the execution

time of the algorithm utilizing two, four and eight processing threads on the quad core. Table 6

shows the speedup of MCHPSO algorithm on various benchmarks. The first column shows the

benchmarks taken for comparison of using logical processors (P) in Intel i7 machine. The second

to ninth columns show the execution time of MCHPSO algorithm. When using two processing

threads each from different core, the speedup was more than 1.5 times that of a single processing

thread. When using four processing threads each from four cores, the speedup was more than 2.5

times that of a single processing thread. When using all the eight processing threads, the speedup

was more than 3.5 times that of a single processing thread execution. The multithreading

available on the cores helped the algorithm to process the particle arrays faster. Our proposed

MCHPSO works faster with more processing threads. The tail off of speedup is likely due to

memory contention.

Table 5 shows the comparison of execution time with different particle sizes. The first column

shows the three large benchmarks taken for comparison. The second to sixth columns show the

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

24

execution time for particle counts 10, 25, 30, 35 and 40. In all the particle count variations, we

were able to get the valid schedule with same utilization of resources. Since we got the same

utilization in all the different particle count, it seems that 10 particles are sufficient.

4.6 ANALYZING THE SPEEDUP OF MCHPSO ALGORITHM IN INTEL I7

PROCESSOR

The Intel Core i7-860 processor (Intel i7-860 processor, 2009) features four cores with a clock

speed of 2.8 GHz. It features symmetric multithreading (hyper-threading) so that each core

supports two threads, for a total of eight threads. It has maximum frequency of 3.46 GHz with

Intel Turbo Boost technology

To analyze the speedup of our MCHPSO scheduling algorithm, we compared the execution

time of the algorithm utilizing two, four and eight processing threads on the quad core. Table 6

shows the speedup of MCHPSO algorithm on various benchmarks. The first column shows the

benchmarks taken for comparison of using logical processors (P) in Intel i7 machine. The second

to ninth columns show the execution time of MCHPSO algorithm. When using two processing

threads each from different core, the speedup was more than 1.5 times that of a single processing

thread. When using four processing threads each from four cores, the speedup was more than 2.5

times that of a single processing thread. When using all the eight processing threads, the speedup

was more than 3.5 times that of a single processing thread execution. The multithreading

available on the cores helped the algorithm to process the particle arrays faster. Our proposed

MCHPSO works faster with more processing threads. The tail off of speedup is likely due to

memory contention.

Table 5. Variation of particle size on an 8 x 8 CGRA

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

25

Benchmarks

Execution time (in seconds) of MCHPSO with varying particle

sizes

10 25 30 35 40

8X8 IDCT_hor 22.29 23.989 26.9 31.328 35.494

4X4 FFT 22.00 48.987 48.137 58.618 66.728

8X8 FDCT_ver 12.07 18.693 21.033 24.403 27.843

4.7 FUNCTIONAL UNITS CAPABLE OF ROUTING AND PERFORMING

COMPUTATIONS

The computational resources in a CGRA are the functional units which are capable of executing

a set of coarse-grained operations such as add, subtract, multiply, and shift. Initially we designed

the FUs only to perform computation and to forward information during routing, if they are not

performing any operation. Later we redesigned the FU to have additional ports and switches to

perform computation and routing at the same time. We studied the utilization of FUs by

comparing the two different FU configurations as shown in

Table 7. The first column shows the benchmarks taken for comparison. The second column

shows the percentage of FU utilization with an FU configuration that cannot route when it is

been used for execution. The third column shows the percentage of FU utilization with an FU

configuration that can route and execute at the same time. The comparison shows that FU

utilization decreases when they are capable of both routing and executing; this makes more

resources available for mapping larger benchmarks.

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

26

Table 6. MCHPSO algorithm speed up comparison on a Intel i7 processor

Benchmarks MCHPSO in Intel® Core™ i7 Processor

Execution Time(Seconds)

 One P 2 P's 3 P's 4 P's 5 P's 6 P's 7 P's 8 P's

FIR_cplx 7.29 4.23 3.10 2.98 2.79 2.68 2.20 2.08

latasynth 6.96 4.17 3.31 3.26 3.20 3.07 2.49 2.43

latanal 2.89 1.76 1.39 1.36 1.30 1.25 1.15 1.06

Volterra 6.26 3.45 2.59 2.36 2.34 2.17 1.86 1.76

IIR 9.13 5.37 3.92 3.65 3.54 3.32 2.81 2.68

IIR_biquad 13.60 7.61 5.40 5.12 5.16 4.56 3.98 3.68

8X8 IDCT_hor 79.31 42.44 32.24 28.82 28.33 27.51 22.69 22.29

4X4 FFT 84.46 44.23 33.16 31.54 29.65 27.58 22.73 22.00

8X8 FDCT_hor 23.28 13.14 9.97 9.39 8.77 8.41 7.15 6.94

8X8 FDCT_ver 44.28 23.97 18.23 17.12 15.87 15.02 12.30 12.07

Table 7. Comparison of FU utilization with placement and routing

Benchmarks

MCHPSO with FU that

cannot route if used for

execution

MCHPSO with FU that

can both route and

execute

FIR_cplx 42.19 39.06

Volterra 42.97 34.38

8X8 IDCT_hor 92.19 73.44

4X4 FFT 88.02 75.52

 8X8 FDCT_hor 83.98 63.28

8X8 FDCT_ver 88.02 78.13

4.8 COMPARISON OF MCHPSO WITH OTHER MODULO SCHEDULING

ALGORITHMS

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

27

Table 8 shows the comparative results of MCHPSO measured against the modulo scheduling

algorithm for the ADRES architecture presented in (Vassiliadis & Soudris, 2007). The first

column shows the benchmarks taken for comparison. The second and seventh columns show the

number of operations derived from the benchmarks on both the algorithms.

The third and eighth columns show the II at which both the algorithm were able to do the loop

level parallelism. The fourth and ninth columns show the schedule density of FU (with routing).

The fifth and tenth columns show the Operations Per Cycle (OPC) as calculated in (7). The sixth

and eleventh columns show the scheduling time in seconds for the mapping of the benchmark.

The comparison shows that our proposed MCHPSO algorithm was able to route the FFT

benchmark within the minimum II with a small measure of execution time.

Table 9 shows the comparison of MCHPSO with the modulo scheduling algorithm used in

(Dimitroulakos, Galanis, & Goutis, 2007). The authors of this paper have used a 2D CGRA with

16 PE with PEIT1 (all PEs are connected with its row PEs and column PEs) and PEIT2 (nearest

neighbour) topology. The execution time is smaller in the PEIT1 than in PEIT2 because there is

a smaller average routing delay experienced by PEIT2. A memory-conscious mapping algorithm

based on the priority-based list scheduling algorithm is used in (Dimitroulakos, Galanis, &

Goutis, 2007). Therefore, we have compared the work done in (Dimitroulakos, Galanis, &

Goutis, 2007) based on PEIT1 with our proposed algorithm. The first column in Table 9 shows

the benchmarks taken for comparison. The second and fifth columns show the number of

operations in the benchmark. The third and sixth column shows the II at which the algorithms

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

28

 Table 8. Comparison of MCHPSO with results in (Vassiliadis & Soudris, 2007)

Comparing

algorithms

8 x 8 MCHPSO Results reported in (Vassiliadis & Soudris, 2007)

Benchmarks

of

ops

II

Schedule Density

(with routing)

OPC

Exe Time in

Seconds

of

ops

II

Schedule Density

(with routing)

OPC

Exe Time

in Seconds

8X8 IDCT_hor 78 3 73.44 26.00 93.11 128 3 90.10% 42.70 340

4X4 FFT 67 3 75.52 24.00 105.89 79 4 75.00% 19.80 314

Table 9. Comparison of MCHPSO with results in (Dimitroulakos, Galanis, & Goutis, 2007)

Comparing

algorithms

4 X 4 MCHPSO Results reported in

(Dimitroulakos, Galanis,

& Goutis, 2007)

Benchmarks # of

Ops

II Schedule

Density

(with

routing)

of

Ops

II Schedule

Density

(with

routing)

latasynth 20 2 78.13 18 6 75.00

Volterra 28 4 57.81 27 7 70.30

IIR 36 4 78.13 39 8 59.50

4X4 FFT 67 7 81.25 95 17 69.60

8X8 IDCT_hor 78 7 89.29 79 14 85.10

latanal 20 2 68.75 18 8 62.50

were able to map the benchmarks. The fifth and ninth columns show the schedule density of FU

(with routing) as calculated in (9).

This comparative study has established that our proposed algorithm has a lower II for all

benchmarks in spite of not using scratch pad memory, which has been used in (Dimitroulakos,

Galanis, & Goutis, 2007). The fifth benchmark 8x8 IDCT-hor depicts a typical case of showing

that our algorithm maps at a lower II with the same number of operations and schedule density

compared with results in (Dimitroulakos, Galanis, & Goutis, 2007). The numbers of operations

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

29

are different for the comparing algorithms because of the differing analysis and transformation

phase carried out in (Vassiliadis & Soudris, 2007) and (Dimitroulakos, Galanis, & Goutis, 2007).

Our proposed algorithm finds schedules with a minimal II for all the benchmarks taken for

comparison to the work done in (Vassiliadis & Soudris, 2007) with lower use of resources.

5. Conclusion and Future work

In this paper, we have done the analysis of the Modulo Constrained Hybrid Particle Swarm

Optimization (MCHPSO) algorithm for the loop scheduling problem in CGRAs. The results

from MCHPSO algorithm indicate that the algorithm can find a valid schedule, placement and

routing for the given benchmark loops, often with a minimal initiation interval, and with a low

use of resources. To study the parallelizability of the MCHPSO algorithm, we have executed it

on a quad−core machine with eight logical processors and found good speedup. We also

analyzed the MCHPSO algorithm with two different FU configurations. The experiment helped

us to understand the enhancement in FU configuration increases the utilization of FUs. Various

interconnections in all FUs study showed that increase in each additional edge produces a

flexible routing process. Thereby, increases the utilization of resources. The size of RFs and its

topology effect has been studied to know the usage of registers and which topology worked the

best for our problem. Shared RFs with each FU gave the best utilization of registers. Since the

MCHPSO algorithm depends on the particle solution, the number of particles to be considered is

studied and reported.

The MCHPSO algorithm can also be enhanced to exploit conditional branches and inter-

iteration dependence. The results produced by MCHPSO will be compared with other hybrid

evolutionary algorithms in the future.

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

30

REFERENCES

(1995). Retrieved 2009, from Texas Instrument inc: http://dspvillage.ti.com/

Abdel-Kader, R. F. (2008). Particle Swarm Optimization for Constrained Instruction Scheduling. VLSI

Design , 2008, 7.

Abielmona, R. (2005). Reconfigurable Computing Architectures. Retrieved 2009, from

http://www.site.uottawa.ca/~rabielmo/personal/rc.html

Allan, V. H., Jones, R. B., Lee, R. M., & Allan, S. J. (1995). Software Pipelining. ACM Computing Survey , 27

(3), 367-432.

Beaty, S. (1994). List scheduling: alone, with foresight, and with lookahead. Massively Parallel

Computing Systems, 1994., Proceedings of the First International Conference on, (pp. 343-347).

Chatterjee, A., & Siarry, P. (2006). Nonlinear inertia weight variation for dynamic adaptation in particle

swarm optimization. Computers and Operations Research , 33 (3), 859-871.

Chiang, T., Chang, P., & Huang, Y. (2006). Multi-Processor Tasks with Resource and Timing Constraints

Using Particle Swarm Optimization. IJCSNS International Journal of Computer Science and Network

Security , 6 (4).

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik , 1,

269-271.

Dimitroulakos, G., Galanis, M. D., & Goutis, C. E. (2007). Design space exploration of an optimized

compiler approach for a generic reconfigurable array architecture. Journal of Supercomputing , 40 (2),

127-157.

Gnanaolivu, R., Norvell, T. S., & Venkatesan, R. (2010). Mapping loops onto Coarse-Grained

Reconfigurable Architectures using Particle Swarm Optimization. Soft Computing and Pattern

Recognition, 2010. SoCPaR 2010. Proceedings., International Conference on, (pp. 145-151). Dec 7-10,

Paris.

Hatanaka, A., & Bagherzadeh, N. (2007). A Modulo Scheduling Algorithm for a Coarse- Grain

Reconfigurable Array Template. Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE

International, (pp. 1-8).

Heath, L. S. (1997). Graph embeddings and simplicial maps. Theory of Computing Systems , 30 (1), 51-65.

Hu, X. (2006). PSO Tutorial. Retrieved 2008, from http://www.swarmintelligence.org/tutorials.php

Intel i7-860 processor. (2009). Retrieved 2010, from

http://download.intel.com/pressroom/kits/embedded/pdfs/Core_i7-860_Core_i5-750.pdf

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

31

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Neural Networks, 1995. Proceedings.,

IEEE International Conference on, 4, pp. 1942-1948 vol.4.

Lam, M. (1988). Software Pipelining: An Effective Scheduling Technique for VLIW Machines. Proceedings

of the SIGPLAN '88 Conference on Programming Language Design and Implementation, (pp. 318-328).

Atlanta,Georgia.

LaPaugh, A. S., & Rivest, R. L. (1978). The subgraph homeomorphism problem. Proceedings of the tenth

annual ACM symposium on Theory of computing (pp. 40-50). San Diego, California, United States: ACM.

Llosa, J., González, A., Ayguadé, E., & Valero, M. (1996). Swing Modulo Scheduling: A Lifetime-Sensitive

Approach. In Conference on Parallel Architectures and Compilation Techniques (PACT'96) (pp. 80-86).

IEEE Computer Society Press.

Llosa, J., Valero, M., Ayguadé, E., & González, A. (1995). Hypernode reduction modulo scheduling.

Microarchitecture, 1995. Proceedings of the 28th Annual International Symposium on, (pp. 350-360).

Mei, B., Lambrechts, A., Verkest, D., Mignolet, J.-Y., & Lauwereins, R. (2005). Architecture Exploration for

a Reconfigurable Architecture Template. IEEE Design and Test of Computers , 22 (2), 90-101.

Mei, B., Vernalde, S., Verkest, D., Man, H. D., & Lauwereins, R. (2003). Exploiting loop-level parallelism

on coarse-grained reconfigurable architectures using modulo scheduling. Computers and Digital

Techniques, IEE Proceedings , 150 (5), 255-261.

Newsome, J., & Song, D. (2003). GEM: Graph EMbedding for Routing and Data-Centric Storage in Sensor

Networks without Geographic Information. Proceedings of the First ACM Conference on Embedded

Network Sensor Systems (pp. 76-88). ACM Press.

Nonsiri, S., & Supratid, S. (2008). Modifying Ant Colony Optimization. Soft Computing in Industrial

Applications, 2008. SMCia '08. IEEE Conference on, (pp. 95-100).

Oh, T., Egger, B., Park, H., & Mahlke, S. (2009). Recurrence cycle aware modulo scheduling for coarse-

grained reconfigurable architectures. SIGPLAN Not. , 44 (7), 21-30.

Park, H., Fan, K., Kudlur, M., & Mahlke, S. (2006). Modulo Graph Embedding: Mapping Applications onto

Coarse-Grained Reconfigurable Architectures. CASES ’06: Proceedings of the 2006 international

conference on Compilers, architecture (pp. 136-146). ACM Press.

Park, S. W. (2005). Lattice LPC Analysis Filter. Retrieved 2009, from

http://www.engineer.tamuk.edu/SPark/Analysis-Synthesis.htm

Rau, B. R. (1994). Iterative modulo scheduling: an algorithm for software pipelining loops. MICRO 27:

Proceedings of the 27th annual international symposium on Microarchitecture (pp. 63-74). New York,

NY, USA: ACM.

International Journal of Organizational and Collective Intelligence (IJOCI) Vol. 0X No. 0X

32

Todman, T., Constantinides, G., Wilton, S., Mencer, O., Luk, W., & Cheung, P. (2005). Reconfigurable

computing: architectures and design methods. Computers and Digital Techniques, IEE Proceedings - ,

152 (2), 193-207.

Tuhin, M., & Norvell, T. S. (2008). Compiling parallel applications to Coarse-Grained Reconfigurable

Architectures. Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference, (pp. 1723-

1728).

Uysal, O., & Bulkan, S. (2008). Comparison of Genetic Algorithm and Particle Swarm Optimization for

Bicriteria Permutation Flowshop Scheduling Problem. International Journal of Computational

Intelligence Research , 4 (2), 159–175.

Vassiliadis, S., & Soudris, D. (2007). ADRES&DRESC: Architecture And Compiler For Coarse-Grain

Reconfigurable Processors. In B. Mei, M. Berekovic, & J.-Y. Mignolet, Fine- and Coarse-Grain

Reconfigurable Computing (pp. 255-297). Springer Netherlands.

VLSI design laboratory. (2002). Retrieved 2009, from http://www.vlsi.ee.upatras.gr

Wang, T. Y., Wu, K. B., & Liu, Y. W. (2001). A simulated annealing algorithm for facility layout problems

under variable demand in Cellular Manufacturing Systems. Computers in Industry , 46 (2), 181-188.

Zalamea, J., Llosa, J., Ayguadé, E., & Valero, M. (2004). Register constrained modulo scheduling. IEEE

Transactions on Parallel and Distributed Systems , 15 (5), 417-430.

Zalamea, J.; Llosa, J.; Ayguadé, E.; Valero, M. (2001). Modulo scheduling with integrated register spilling

for clustered VLIW architectures. Microarchitecture, 2001. MICRO-34. Proceedings. 34th ACM/IEEE

International Symposium on, (pp. 160-169).

