
 1

Take Back Control
Or How I Learned to Stop Worrying

and Love Event Driven Code

Theodore Norvell NDEV

 2

What other people are saying
about this talk:

● “[...] our powers to visualize processes evolving in time are
relatively poorly developed. For that reason we should do (as
wise programmers aware of our limitations) our utmost to
shorten the conceptual gap between the static program and
the dynamic process, to make the correspondence between
the program (spread out in text space) and the process
(spread out in time) as trivial as possible.” --- E.W.Dijkstra

 3

The Problem
● Problem: How to write event driven code in a structured

fashion.

 4

Outline
● Event driven programs

● Structured vs unstructured control structures

● Some ideas I had

● TBC: a monad-based library to solve the problem

 5

McMillan's warning
● When asked what sort of thing is most likely to blow a

program off course, Harald McMillan would have said

Events,
dear boy,
events!

 6

Events
● In a GUI: User actions such as keypresses, mouse actions,

button clicks, focus, blur, etc.

● In a server: Requests from clients. Responses from DBMSs.

● In a client: Responses from servers.

● In a real-time system: The passage of time

● In a concurrent or distributed program: Receiving messages.

● In a concurrent program: Semaphore changes state.

 7

A use case
Use case: Greet the user forever

 0 The following sequence is repeated forever

 0.0 System: Prompts for name
 0.1 User: Types in a name and presses “enter”
 0.2 System: Greets the user by name

The Use case tells a story.

 8

A non-event-driven program

proc main()
 loop
 print “What is your name?”
 var name := readLine
 print “Hello, ” name “.”

The code tells a story. The structure of the story is reflected in
the structure of the code.

 9

An event-driven program

var nameBox := new TextField()
var question := new Label(“What is your name”)
var reply := new Label()

proc main()
 nameBox.on(enter, nameBoxHandler)
 show question
 show nameBox
 show reply

proc nameBoxHandler()
 var name := nameBox.contents()
 reply.text := “Hello, ” name “.”

Where did the control structure go?

 10

Narrative structure
The structure of the non-event-driven code follows the narrative
of the use case

Use case: Greet the user forever

 0 The following sequence is
repeated forever

 0.0 System: Prompts for
 name
 0.1 User: Types in a
 name and presses
 “enter”
 0.2 System: Greets the
 user by name

proc main()
 loop
 print “What is your
 name?”
 var name := readLine
 print “Hello, ” name “.”

 11

Unstructured

Use case: Greet ...

 0 The following sequence is
repeated forever

 0.0 System: Prompts for
 name
 0.1 User: Types in a
 name and presses
 “enter”
 0.2 System: Greets the
 user by name

var nameBox := new TextField
var question := new Label(“W
var reply := new Label()

proc main()
 nameBox.on(enter,nameBo
 show question
 show nameBox
 show reply

proc nameBoxHandler()
 var name := nameBox.conte
 reply.text := “Hello, ” name “.”

 12

Changing requirements

Use case: Greet the user forever

 0 The following sequence is
repeated forever

 0.0 System: Prompts for
 name
 0.1 User: Types in a
 name and presses
 “enter”
 0.2 System: Greets the
 user by name

 0.3 Wait 1 second

proc main()
 loop
 print “What is your
 name?”
 var name := readLine
 print “Hello, ” name “.”

 pause 1000

 13

Changing requirements
var nameBox := new TextField()
var question := new Label(“What's your name”)
var reply := new Label()
var timer := new Timer()

proc main()
 nameBox.on(enter,nameBoxHander)
 timer.on(done, timeHander)
 show question ; show nameBox ; show reply

proc nameBoxHandler()
 var name := nameBox.contents
 reply.text := “Hello, ” name “.”
 hide question ; hide nameBox ;
 start timer

proc timeHandler()
 stop timer ; show question ; clear nameBox ; show nameBox

 14

Protocol
● A prefix-closed set of sequences of events.

● What formalisms do we have for describing sets of
sequences?

– State machines (Σ, Q, q
0
, T)

– Regular Expressions

– Context Free Grammars (BNF)

– Extended Context Free Grammar (EBNF)
ECFG = CFG + RE

 15

Some broad opinions
● State Machines

– Unstructured

(Not compositional)

– No abstraction

– No recursion
● Regular expressions

– Structured: loop,
choice, sequence

– No abstraction. No
recursion.

● CFGs

– Limited structure

– Abstraction
(naming).

– Recursion
● Extended CFGs

– Structuring

– Abstraction

– Recursion

 16

Digression on unstructured and
structured programming

● 1948: Konrad Zuse publishes a paper on
Plankalkül, a structured programming
language

– No one reads it.
● 1948: Von Neumann and Goldstein

introduce “flow diagrams” in Planning and
Coding of Problems for an Electronic
Computing instrument

– Everyone reads it.
● 1948: Coding is in machine language with

branch instructions or conditional branch
instructions (at best!).

 17

Plankalkül vs Flow Diagrams

 18

Digression on unstructured and
structured programming

● 1953: Wheeler (re)invents the subroutine.

● 1958: Flow chart are the state of the art.

– Coding is in assembly or Fortran II (computed go to)
● 1958--1960: Algol 58, Algol 60, and LISP provide structured

control constructs if-then-else, while-do, for-do

● 1968: ACM Curriculum Committee recommends flowcharts in
the first course of computer science programs.

– Fortran IV and COBOL are dominant languages

 19

Digression on unstructured and
structured programming

From Knuth's CACM
paper on RUNCIBLE.

 20

Digression on unstructured and
structured programming

● 1967: Floyd's paper on verification of flowcharts

● 1968: Dijkstra pens his “GO TO statement considered
harmful”, sparking in the Structured Programming Revolution.

– “The go to statement as it stands is just too primitive; it
is too much an invitation to make a mess of one's
program.”

● 1969: Hoare's paper on verification of structured programs

● 1978: The revolution is mostly over. Most programmers are
taught to only use GOTOs to emulate “structured code”.

– Popular languages include Fortran IV and Pascal
● 1988: Flowcharts and unstructured programming are dead.

 21

Digression on unstructured and
structured programming

● 1998-2018 Flowcharts are popular in comic strips, but not in
software engineering.

– Unstructured code is not well regarded

– Most popular languages (JavaScript, Java, Python)
don't even have a go to statement.

 22

Back to Events
● Inversion of control programs are state machines

● and state machines are just unstructured programming all
over again.

● Worse than that, the representation of state is often entirely
implicit.

– Consider the program we just saw.

– It has two states. How are these states represented?

– Only the transitions are explicitly represented.

 23

Inv. of control ~= State machine

stop timer
show question
clear nameBox
show nameBox

var nameBox := new TextField()
var question := new Label(“What's your name”)
var reply := new Label()
var timer := new Timer()

show question
 show nameBox
 show reply

var name := nameBox.contents
reply.text := “Hello, ” name “.”
hide question
hide nameBox ; start timer

nameBox.enter /

timer.done /

 24

Non-inverted control ~= ECFGs
var nameBox := new TextField()
var question := new Label(“What's your name”)
var reply := new Label()

 <main> ::= show nameBox ; show question; show reply
 <main loop>

<main loop> ::= (clear nameBox
 show question
 show nameBox
 <get and show reply>
 hide question
 hide nameBox
 pause 1000)*

<get and show reply> ::= await nameBox.enter
 var name := nameBox.contents
 reply.text := “Hello, ” name “.”

 25

An early idea
● Background: A “parser generator” translates grammars

(annotated with actions) to non-event-driven driven code in an
implementation language. (E.g., yacc, ANTLR, JavaCC, etc.)

● Problem: How to write UI code cleanly

● Solution 0:

– Design user interfaces using grammars annotated with
actions

– We need a “UI generator” to generate UI code from
annotated grammars.

 26

Parser combinators
● An alternative to parser generators is “parser combinators”.

● A parser combinator is a function that takes one or more
parsers and produces a parser.

● Parser combinator libraries allow us to write recursive descent
parsers directly in the implementation language but which
look like the EBNF grammar.

● EDSL (Embedded Domain Specific Language)

 27

Parser combinators
● Example:

– <A> → b <C> | d <E> is coded as

function A() : Parser {

 return alt(tok(“b”).seq(C),
 tok(“d”).seq(E)) ; }

● Here are the key library routines:

● tok makes a parser from a terminal
● alt(p,q) is a parser where p and q are parsers
● p.seq(f) is a parser where p is a parser and f returns a

parser.

 28

A better idea
● Problem: How can we write UI code cleanly

● Solution 1:

– Use a library of combinators

– to write code directly in the implementation language

– but which looks a lot like a grammar.

 29

A personal note
● In 1992 I went to a summer school in Germany

● Phil Wadler was giving lectures on Monads

● I asked him about a problem I was having structuring a parser
in a pure functional language.

● His advice:

● This has often proved good advice.

Use a monad

 30

Can we use a Monad?
● Yes!

● Monadic Parser Combinators are a well known style of Parser
Combinator.

● Monads work well with parsers because they help move
information around both implicitly and explicitly.

● But what is a monad?

 31

What is a Monad?
● Each monad M is a generic type with two operations

– unit is a function that maps each A to an M<A>

– p.bind(f) is an M<A> when p is an M and f is a
function that maps each B to an M<A>

– With some laws similar to the monoid laws.

1. p.bind(unit) = p

2. unit(a).bind(f) = f(a)

3. (p.bind(f)).bind(g) = p.bind(λx∙f(x).bind(g))

 32

Monads are useful
● Monads are used for implicit state, exceptions, I/O,

collections, nondeterminacy, parsing, STM, etc.

● They are a core concept in Haskell – a functional language

● M<A> is a type representing some set of things that can
produce values of type A

● unit injects a value into the monad.

● bind usually represents some kind of sequencing or
composition.

 33

Monads in Imperative
Programming

● In functional programming monads are largely a solution for
“problems” imperative programmers don't have:

– No implicit state / Haskell's StateMonad

– No synchronous IO / Haskell's IO monad

– No exceptions / Haskell's Except transformer
● But, there are problems that imperative programmers do have

where monads can help

– Poor Asynchronous IO

– No concurrent programming (in some environments)

– Collections

 34

Take Back Control
● Take Back Control (TBC) is a library I've designed for dealing

with

– Asynchronous I/O

– Cooperative multithreading

– Event driven programming in general
● Written in the Haxe language

● Haxe transpiles to JavaScript, Python, and other languages

● TBC can be used from Haxe, Python, JavaScript, Typescript,
CoffeeScript, PHP, etc.

 35

Take Back Control

Sneak peek: This is code written in Haxe using TBC.

 static function mainLoop() : Process<Triv> { return
 loop (clearText(nameBox) >
 show(nameBox) >
 show(question) >
 getAndDisplayAnswer() >
 hide(question) >
 hide(nameBox) >
 pause(1000)) ; }

 static function getAndDisplayAnswer()
 : Process<Triv> { return
 await(enter(nameBox) && getValue(nameBox)) >=
 (name:String) -> hello(name) ; }

 36

The Process Monad
● A central type provided by TBC is

 The Process Monad.

● For each type A, there is a type Process<A> that represents
processes that deal with events and then produce values of
type A.

● unit(x) is a process that deals with no events and produces
the value x right away.

● p.bind(f) is a process that first behaves like process p and
then like f(b) where b is the value produced by process p.

 37

Types
● For any types A and B

 unit(a) : Process<A>
and

● p.bind(f) : Process<A>

● if
 a : A
 p : Process
 f : f -> Process<A>
 (i.e. f is a function from B to Process<A>)

 38

Digression on anonymous
functions: a.k.a. λ expressions

In Haxe

 function f(i : Int) : Bool { return i==x ; }
 ... a.map(f) ...

is the same as

 final f = function(i : Int) : Bool { return i==x ; } ;
 ... a.map(f) ...

 Lambda Expression

 39

Digression on anonymous
functions: a.k.a. λ expressions

And

 final f = function(i:Int) : Bool { return i==x ; } ;
 ... a.map(f) ...

is the same (if f is only used once) as

 ... a.map(function(i:Int) : Bool { return i==x ; }) ...

which is the same (in Haxe 4) as

 ... a.map((i:Int) -> i==x) ...

which is the same as

 ... a.map(i -> i==x) …

In JavaScript: a.map(i => i==x)

 40

An example: unit and bind
● pause(t) is a process that waits until t milliseconds have

passed. It produces null.

● pause(1000).bind(x -> unit(42))
produces a result of 42 after a 1 second delay.

 41

Side effects: exec
● exec(f) is a process that waits for no events and

immediately calls f; it produces the result of f().

● E.g.
 pause(1000).bind(x -> print(42))
prints 42 after a pause of 1 second if we define
 function print(n : Int):Process<Triv> {
 return exec(()->{trace(n);null});}

 42

Operators
● In Haxe we can use operator overloading

 p >= f abbreviates p.bind(f)

 p > q abbreviates (approximately) p.bind(x -> q)

● For example

– pause(1000) > print(42)
prints 42 after 1s

● Fine print: pause(1000) > print(42) calls print immediately, but
pause(1000) >= x -> print(42) calls print 1 second after the
process starts.

– As print is a pure function, it doesn't matter when it's called.

 43

Reading Monadic Code

JavaScript / TypeScript
p.bind(x =>

E.bind(y =>

F.bind(z =>

G)))

The result of p is bound to x
etc.

Haxe

p >= x ->

E >= y ->

F >= z ->

G

That's why it's called “bind”.

Note that x can be used in
expressions E, F, and G.

 44

A little Haxe Hack for Haskellers

I wrote a macro called seq so that

 p >= x ->
 E >= y ->
 F >= z ->
 G

can be written as

 seq((var x := p),
� (var y := E),
 (var z := F),
 G)

 45

A strange coincidence
In Haskel, bind is written as
>>=.

But Haxe doesn't allow new
operators, so I lopped off one >
to get >=.

By coincidence, Zuse's 1948
paper on Plankalkül used
almost the same symbol and
direction for assignment.

 46

Implementing the Process Monad
● Each process p : Process<A> has a method

 p.go(k : A -> void)

● The go method initiates the process.

● Its argument specifies what is to be done with the result. k is
for kontinuation.

● unit(a).go(k) means k(a)

● p.bind(f).go(k) means
 p.go(b -> f(b).go(k))

 47

Implementing the Process Monad
● exec(f).go(k) means k(f())

● pause(t).go(k) means
 var timer = new Timer(t) ;
 timer.run = () -> k(null) ;
 timer.start() ;

● E.g. pause(1000).bind(x->print(42)).go(k)
 ≡ (approx.)
 var timer = new Timer(1000) ;
 timer.run = () -> (x ->
 exec(()->
 {trace(42);null})
)(null).go(k) ;
 timer.start() ;

 ≡
 var timer = new Timer(1000) ;
 timer.run = () -> k({trace(42);null}) ;
 timer.start() ;

 48

Extending the framework
● You can easily extend the framework by creating your own

classes that implement the Process interface.

● You just extend class ProcessA<A> while overriding method

public function go(k : A -> Void) { … }

 49

Loops
Define

 public static function loop<A>(p : Process<A>)
 : Process<Triv> {
 return p >= (a -> loop(p)) ; }

● [N.B. It looks like an infinite recursion, but it is not! Bind does
not call a -> loop(p) . It just stores the function in the Process
object that gets returned. The following definition would not
work

 public static function loop<A>(p : Process<A>)
 : Process<Triv> {
 return p > loop(p) ; }

This is an infinite recursion.]

 50

Now you can understand
our example

 static function mainLoop() : Process<Triv> { return
 loop(clearText(nameBox) >
 show(nameBox) >
 show(question) >
 getAndDisplayAnswer() >
 hide(question) >
 hide(nameBox) >
 pause(1000)) ;

We define clearText as:

static function clearText(el : InputElement) :
 Process<Triv> { return
 exec(() -> {el.value = ""; null;}) ; }

And similarly for hide and show.

 51

Guards
● But what about

 static function getAndDisplayAnswer() : Process<Triv> {
 return await(enter(nameBox) && getValue(nameBox))
 >= (name:String) -> hello(name) ; }

● What's happening there?

● Define a type Guard<E>. Objects of type Guard<E> represent the
act of waiting for one of some set of events.

● Above enter(nameBox) is a Guard object representing the act of
waiting for the enter key to be pressed in the name box.

 52

Guarded processes
● If e is a Guard<E> and p is a Process<A>, then

 e && p is a GuardedProcess<A>

● It represents the act of waiting for an event and then behaving
like p.

● If gp is a GuardedProcess<A>, then
 await(gp) is a Process<A>

So in the example we have
 await(enter(nameBox) && getValue(nameBox))

Guard<Triv> Process<String>

GuardedProcess<String>
Process<String>

 53

Guarded Processes
● We have

 static function getAndDisplayAnswer() : Process<Triv> {
 return await(enter(nameBox) && getValue(nameBox))
 >= (name:String) -> hello(name) ; }

 static function hello(name : String): Process<Triv> {
 return putText(reply, "Hello "+name) ; }

● So the result of the await process is piped into the hello
function which produces a process to put the string into the
reply box.

 54

Event values
● The && operator throws away the underlying event data.

● We can also pipe information from the event to a process.

● If e is an Guard<E> and f is a function in E -> Process<A>,
then
 e >> f
is a GuardedProcess<A>. For example
 await(e >> unit)
is a Process<E>.

 55

Event filtering
● If e is a Guard<E> and g is a function in E -> Bool, then

 e & g is a Guard<E>

● e & g ignores events where g gives false. For example the
enter(nameBox) guard is constructed as follows

static function enter(el : Element) : Guard<Event> {

 function isEnterKey(ev : Event) : Bool {
 var kev = cast(ev, KeyboardEvent) ;
 return kev.code == “Enter” ; }

 return keypress(nameBox) & isEnterKey ;
}

 56

Choices
● Given two guarded processes gp0 and gp1,

 gp0 || gp1 is also a guarded process

● The first event to happen wins.

● Here is an example

 loop(await(
 upKey(body) >> preventDefault > exec(bigger)

 || downKey(body) >> preventDefault > exec(smaller)))

● Here is an example with a timeout.

 await(click(b1a) && out("1A")

 || click(b1b) && out("1B")

 || timeout(2000) && out("too slow"))

 57

Extending the framework
● You can create your own class of guards just by extending

class GuardA<E> while overriding this method
● public function enable(k : E -> Void) : Disabler { …

● The k represents the thing to do when the event happens.

● The result is simply an object that can disable the guard.

 58

Implementing await
● Consider

● await(g && p || h && q).go(k)

● Enables, guard g, passing in a continuation that

– Disables both g and h and then

– calls p.go(k)
● Also enables guard h, passing in a continuation that

– Disables both g and h and then

– calls q.go(k)

 59

Cooperative Multithreading
● JavaScript has one thread.

● But just as cooperative multitasking shares one CPU among
many tasks, cooperative multithreading can share one thread
among many executing processes.

● If p and q are both processes
then par(p, q) is a process.

● par(p, q).go(k) starts both processes. k will be called
only after both processes complete.

● Each process runs uninterrupted until it awaits an event.

● parFor(n, f) runs processes f(0), f(1), …, f(n-1) in
parallel.

 60

Exception Handling
● What if there is an exception?

● We can set up an exception handler
 attempt(p, f)
or attempt(p, f, q)
where f is a function from exceptions to processes
and q is a process to be done regardless.

● E.g. openFile >= (h:Handle) ->
 attempt(doStuffWithIt(h),
 (ex:Dynamic) -> cope(ex),
 closeFile(h))

● Implementation: I lied earlier. The go method actually takes
two continuations: One for normal termination and one for
exceptional termination.

 61

Process Algebras
● Process Algebras are theoretical calculi intended for modeling

concurrent code

● similar to how lambda calculus models sequential code.

● Communicating Sequential Processes (CSP)

● Calculus of Communicating Systems (CCS)

● Although TBC was inspired by Context Free Grammars, it
ended up recreating many of the ideas of process algebras.

 62

Other approaches
● See blog post “What color is your function?” by Bob Nystrom

 http://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

● Node style functions. Explicit continuation passing
everywhere.

● Promises. More compositional than node-style functions.

● Promises + async/await syntax from ES8. Take care of much
of the boiler plate of promises.

● These cope with sequencing, but none really tackle choice.

 63

Other approaches
● Mostly require unusual language features, multithreading, or

macros.

● C#: async methods (language feature)

● Java Swing dialogs (multithreading)

● Golang: go routines (lang., multithreading)

● Closjure: core.async (relies on macros. Can run on 1 thread
or more!)

 64

Conclusion
● Inversion of control is not as cool as it sounds.

– It's unstructured programming all over again.
● TBC gives you an extensible framework to write structured

programs for

– asynchronous event handling

– concurrency (cooperative multithreading)

 65

Conclusion
● TBC supports

– Composition: sequential, parallel, choice, looping

– Abstraction via subroutines and parameters

– Recursion if you need it.
● TBC works in single-threaded environments and can be used

from

– Haxe

– JavaScript / Typescript

– Python

– PHP

 66

Why Strangelove?
● In Dr. Strangelove, events take the world to the brink of

disaster when Colonel Jack Ripper tries to single handedly
start a nuclear war.

● Ripper inverts control.

● It is up to Presidents Merkin and Kissov to Take Back Control.

 67

O.P.E.

 68

P.O.E.
● In 1992 Phil Wadler popularized Monads in a paper called:

The Essence of Functional Programming

 One of his monads is essentially the Process monad.

 By Functional Programming, he meant Pure Functional
Programming.

 Essence Of Pure functional programming
➔ Essence Of Purity
➔ Purity Of Essence
➔ Parsers Of Events
➔ Processes Over Events
➔ Peace On Earth

 69

The end

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

