
Lifting the Hood of the Computer:*

Program Animation with the Teaching Machine

Michael P. Bruce-Lockhart and Theodore S. Norvell
Electrical and Computer Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

* Published in Proceedings of the Canadian Electrical and Computer Engineering Conference 2000, Rob-
ert W. Creighton Ed., pp. 831�835, Halifax, Canada, May 2000.

Abstract:
The teaching of computer programming concepts is ham-
pered by the difficulty students have in visualizing the
dynamic processes that are controlled by the static texts
of computer programs. This is no surprise, as the stu-
dents have never actually seen these processes.

To reveal what is happening "under the hood" of the
computer, we have developed a new tool for program
animation: the Teaching Machine. It shows an abstrac-
tion that captures some of the ways high-level program-
mers think of machines, by modeling aspects of both the
underlying processor and the compiler. As a program
executes, the Teaching Machine can show the flow of
control through the source code, the evaluation of expres-
sions, and the changing values of data objects in the
memory.

The Teaching Machine allows considerable flexibility.
Views that are not relevant to an example can be hidden.
Execution steps can be as large as a complete subroutine
call or as small as a single arithmetic operation. Memory
can be viewed in any of four different formats, including
a box and arrow representation, which allows automatic
animation of algorithms on data structures such as linked
lists and trees.

We have used the Teaching Machine in a number of
ways: as an animated blackboard for an instructor to use
in the classroom; as an application that students can use
to investigate either canned examples or their own pro-
grams; as an component in a web tutorial; and as the cen-
trepiece of a series of tutorial videos. The Teaching Ma-
chine has been used in a first course on programming, a
second course on programming, and a course on data
structures.

The current version of the Teaching Machine supports a
usable subset of C++. A version that also supports Java is
under development. The Teaching Machine itself is
written in Java for ease of distribution over the World
Wide Web.

Introduction
The instructor in the classroom faces an interesting prob-
lem in explaining programming and programming lan-
guage concepts to beginning students. It is easy to show
the students programs or pieces of programs, such as ex-
pressions and statements, but it is harder to show the ef-
fect of these static texts on the elements of the computer
or compiler.

Students need to construct for themselves a conception of
algorithmic processes and a connection between the pro-
gram text and these processes. The execution of com-
puter programs needs to be demystified, so that program
design can become less ritualistic and more based on rea-
son and understanding.

To aid with this problem, we have created a new peda-
gogical tool, called the Teaching Machine. The Teaching
Machine provides the student with a glimpse at what is
happening inside the machine, as a high-level program is
being executed. It can be thought of as an interpreter,
with visual displays of the state of the memory and other
resources.

The Teaching Machine shows an abstraction of the com-
puter and the compiler. We do not attempt to model the
way that high-level languages are implemented in detail,
for example we do not worry about machine code, even
though we are illustrating languages that are normally
compiled. Nor do we make the usual distinction between
run-time and compile-time. These issues are important
for students to understand once the basics of the language
are understood; until then they are not necessary and just
get in the way.

A Tour of the Teaching Machine
Figure 0 shows the Teaching Machine running as a stand-
alone application. Within the main window are a number
of subwindows, each of which presents some aspect of a
C++ program as it is being executed.

The subwindow labeled �Source Code� shows the text of
the program. The line of code currently being executed is
highlighted with a yellow background. The various but-
tons at the top of this subwindow control execution of the
program. The program can be stepped either one expres-
sion at a time or until the program reaches a breakpoint
specified using a cursor. When executing one expression
at a time, subroutine calls may be stepped into or stepped
over.

The subwindow labeled �Stack� shows the values of vari-
ables in stack region memory. There are also subwin-
dows, not shown in Figure 0, to show the static and the
heap regions of memory. The variable named �fahr� is
shown highlighted because it is about to be accessed. By
default, memory values are shown in a high-level repre-
sentation; it is, however, possible to display them in bi-
nary. Compound variables, such as arrays and structures,
can be expanded to show their members.

The subwindow labeled �Symbol Table� shows the
names, types, and addresses of each variable, currently
alive.

The �Console� subwindow shows the standard input and
output streams, input and output are colour coded.

At the heart of the Teaching Machine is a subwindow
labeled the Expression Engine. Seamlessly combining
the notion of an Arithmetic Logic Unit with the com-
piler's expression parsing, it allows students to dissect the
evaluation of expressions. The button marked with a �
allows the expressions to be single stepped. Figure 1
shows successive states of the expression engine as an
expression is evaluated. In this example, �count� is an
int variable and so the example illustrates some of the
tricky aspects of C++�s arithmetic rules: that the quotient
of two integers may not be what the students expect, that
integers are converted to floating point numbers when
combined with floating point numbers, and that floating

Figure 0

point numbers are truncated when assigned to integral
variables.

At each point, the next part of the expression to be evalu-
ated is underlined. At points (a) and (f) the next action is
to look up the variable in the symbol table, so the corre-
sponding symbol table entry is highlighted. At points (b)
and (h) the next action is to access or change memory, so
the corresponding memory locations are highlighted. The
transitions from (d) to (e) and from (g) to (h) show
implicit type conversions.

Colour is used to emphasize the process of expression
evaluation. Black is used for unevaluated expressions,
red for values, and blue for lvalues whose address has
been calculated. The underlined occurrences of �count�
in points (b) , (g), and (h) are blue.

Because instructors or students may wish to repeat some
part of an execution�perhaps to go over a large step in
more detail�the Teaching Machine supports an infinite
undo facility, which backs up the state of the evaluator to
the state prior to the previous user interaction.

Parameters such as the size of the window; the choice,
size, and arrangement of subwindows; and other display
matters, such as colour schemes and fonts are all config-
urable by the user. This allows the instructor to choose
and focus on only the aspects of execution that are most
relevant to a particular example. Configurations may be
saved and later reloaded.

Data Structures
In the Stack, Heap, and Static subwindows, data values
are arranged according to their addresses and pointer val-
ues are displayed as integers (in decimal). This low-level
view helps to demystify the idea of pointers and clarify
the difference between pointer variables and pointer val-
ues. We also provide a higher-level view of memory,
suitable for illustrating the manipulation of linked data
structures such as linked lists and trees. Figure 2 shows a
screen dump of our preliminary version of this subwin-
dow. Stack variables are arranged in order of address on
the left, while heap variables are arranged on the right.

The layout of this subwindow is entirely automatic, re-
quiring no annotation of the source code.

In this way, the Teaching Machine, like the systems re-
ported in [2] and [4], provides a highly automated system
for algorithm animation. In contrast most existing sys-
tems for algorithm automation require some mark-up of
the code (e.g., [0]), or do not use the code at all as a basis
for the animation (e.g., [3]).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 1

Figure 2

Modes of Use

In the Classroom
We originally conceived of the Teaching Machine as an
adjunct to classroom lectures. The traditional tool of
classroom instruction�the blackboard� can be used in
two ways to illustrate algorithmic processes. The black-
board can be used as a stand-in for the computer's mem-
ory: In this case the instructor is frequently erasing and
redrawing the various memory locations on the black-
board. Students can easily lose track of where in the al-
gorithm the instructor is and those trying to take complete
notes will be frustrated. The second way the blackboard
is typically used is to write traces of the algorithm. This
can lead to a lot of rewriting and can also leave students
confused about the connection between the points in the
trace and the points in the algorithm.

The Teaching Machine automates the first mode of in-
struction�implementing a sort of electronic blackboard.
Since the execution of the algorithm is shown in the
Source Code subwindow and the Expression Engine
subwindow at the same time as the memory is shown in
the Stack, Static, and Heap subwindows, students should
be less prone to confusion about when actions on memory
are taking place with respect to the text.

Video Presentations
It is possible to lecture on introductory programming us-
ing almost no visual aids other than the Teaching Ma-
chine. An effective extension of the classroom use of the
Teaching Machine is to produce tutorial versions of dem-
onstrations as videos. These tutorials are produced by
combining direct capture of the Teaching Machine�s
window with a voice overlay. We have produced a num-
ber of such videos for use in a first course on computer
programming. This series was placed on a CD-ROM and
made available to Engineering students at Memorial tak-
ing their first programming course. A fair number of
students were willing to pay ten dollars for the CD-ROM.
We have yet to collect data on the perceived or actual
benefit to the students.

The intended use of this series of videos is as a tutorial
supplement to the regular classroom lectures. However,
such videos can be used more centrally in distance edu-
cation and self-study.

World Wide Web
The Teaching Machine can be run either as a stand-alone
application or as an applet. As an applet, it can appear

either in a window of its own, with its own menu, or
within a browser window.

A number of commands for controlling the applet are
available to the web page designer. For example, there
are commands for loading a source file from the server,
for changing the configuration, and for stepping through
the program.

We have used the Teaching Machine as an applet in two
kinds of web pages.

Student controlled use of applets

When the first kind of web page loads, it commands the
Teaching Machine, which is already running in a differ-
ent window, to load a source file from the server. The
text on the web page describes the program and the main
points that it illustrates. The student is then free to step
through the program using the Teaching Machine in
whatever manner they feel fit. This method of delivering
content on the web is highly unconstrained and involves
the student as an active learner who must use their inge-
nuity and understanding to control the Teaching Machine
in such a way as to illustrate the teaching point. Such a
mode of interaction is suitable for more advanced stu-
dents.

Page controlled use of applets

The second kind of web page is much more constrained.
In this case, the Teaching Machine appears on the
browser window in one frame, while explanatory text
appears in a second frame. As the user pages through the
explanatory text, commands are sent to the applet to step
through the program. The extent of each step can be
completely controlled by the web-page designer. Such
web pages can be combined with self-checking quiz
questions to add engagement to the experience of the web
tutorial. One drawback of this form of web page is that
the student�s eyes are required in both frames at once.
This drawback can be overcome by the optional use of
sound clips to replace the explanatory text.

Language Support
The currently released version of the Teaching Machine
supports a subset of C++, corresponding roughly to the C
language. Support for member functions and overloading
will be included in a future version.

An effort was made in the design to isolate the language
dependant aspects to a few modules so that other lan-
guage interpreters can be added in the future. A version
that supports Java is under development.

Experience Report
Over the past three years have used the Teaching Ma-
chine in the Faculty of Engineering at Memorial Univer-
sity in two courses�one, our first course in C++ and sec-
ond programming course�the other, a course in data
structures. The Teaching Machine was used in lectures,
and the examples used were made available on the World
Wide Web for student directed use with the applet.

Recently our curriculum changed to use C++ in our first
programming course. The instructors are again using the
Teaching Machine in the classroom. In addition, a num-
ber of tutorial videos were made available via CD-ROM
or the web.

Feedback from instructors other than the developers has
been positive and has lead to some improvements. Feed-
back from our students will be sought.

Future Directions
Although the Expression Engine separates the Teaching
Machines from debuggers, the original animations still
have much of the flavour of those everyday coding work-
horses. The addition of the higher level, linked view for
the dissection of data structures took us in the direction of
algorithm animation. The introduction of classes sug-
gests new animation techniques. Object-oriented pro-
gramming is a different and much more complex beast.
The challenge is to represent the interplay of objects and
classes in a way comprehensible for the beginner within
the bounds of a very restricted piece of real estate. We're
working on ideas but they have not gotten beyond the
blackboard stage as yet.

The Teaching Machine can be extended to accommodate
views such as histograms and scatterplots for arrays, and
circle-and-line diagrams for graphs. Such views are use-
ful for animation algorithms, such one might find in a
course on algorithms and complexity [0], [1], [3], [5].
Such views will require annotation of the source program.
Although we have thus far avoided annotation, it should
not be hard to add, nor should it be difficult to add new
views to the current framework.

C++ is a complex language. Once its core has been cap-
tured, there will always be a demand to extend the
Teaching Machine's capabilities into every corner of the
language. While this is not difficult in principle, it will
require significant resources. The same comment can be
made with regard to other languages. A preliminary Java
version is under development. Given Java's tighter struc-
ture and growing popularity, the case for a full version is
even more compelling.

Once a language is fully or almost fully covered it be-
comes tempting to encourage students to use the Teach-
ing Machine on their own programs. This entails greater
robustness in handling illegal code and code that falls
outside the supported subset than is currently imple-
mented. So enhanced error reporting is a future goal.

Conclusion
The Teaching Machine provides the instructor a flexible
educational platform to illustrate many of the concepts
that perplex early students of programming. It lifts the
hood of the computer in the sense that it lets the student
look inside the computer to see first-hand the behaviour
specified by a computer program. We feel that it can
offer the instructor, either teaching in the classroom or
developing multimedia instructional material, a valuable
tool with which to reveal the secrets locked inside the
machine.

References
[0] Marc Brown, Algorithm Animation, ACM Distin-
guished Dissertation Series, MIT Press, 1988.

[1] Arturo Conception, Lawrence Cummins, Ernest
Moran, and Man M. Do, �Algorithma 98: An Algorithm
Animation Project,� Thirteenth SIGCSE Technical Sym-
posium on Computer Science Education, 1999.

[2] J. Haajanen, E. Pesonius, E. Sutinen, J. Tarhio, T.
Teräsvirta and P. Vanninen, �Animation of User Algo-
rithms on the Web,� Proceedings of VL'97, 1997.

[3] John Hewson, Wendy Doube, and Michael Calagaz,
�A Multimedia Animated Simulation Generator,� The 4th
Annual SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education, ITiCSE'99,
1999.

[4] R. Sangwan, J. Korsh and P. LaFollette, �A System
for Program Visualization in the Classroom�, The 29th

SIGCSE Technical Symposium on Computer Science
Education, 1998.

[5] Linda Stern, Harald Søndergaard and Lee Naish, �A
Strategy for Managing Content Complexity in Algorithm
Animation,� The 4th Annual SIGCSE/SIGCUE Confer-
ence on Innovation and Technology in Computer Science
Education, ITiCSE'99, 1999.

