
A GRAINLESS SEMANTICS FOR THE HARPO/L LANGUAGE

Theodore S. Norvell

Memorial University of Newfoundland
Computer Engineering Research Labs

St. John’s, NL
theo@mun.ca

ABSTRACT
This paper presents a dynamic semantics for the parallel lan-
guage HARPO/L, based on Reynolds’s grainless approach
[1]. It shows that the approach scales to somewhat more
sophisticated languages with few changes, while providing a
solid semantics for the language, which will be used as a basis
for compilation and optimization.

Index Terms— parallel languages, concurrency, language
semantics, grainless semantics

1. INTRODUCTION

HARPO/L is a new behavioural language intended for pro-
gramming configurable hardware and microprocessors [2].
The language supports interprocess communication via shared
variables and rendezvous.

The meaning of shared variable programs is convention-
ally dependent on the granularity of operations. Consider

(co x := x+ 1 || x := x+ 1 co) (1)

where x is an integer variable. If we consider that each assign-
ment command is atomic, then (1) means x := x + 2; if we
consider that each integer access is atomic, then the command
nondeterministically increments x by either 1 or 2; if we con-
sider that each memory byte access is atomic, the meaning
might depend on the detailed representation of integers.

Any granularity assumption puts severe constraints on op-
timization. Arrays and dynamically assigned pointers allow
locations to have numerous aliases, and this can inhibit almost
all optimizations that involve reordering memory accesses.
Worse, any granularity assumption above that provided by the
native hardware requires locks to be inserted that can largely
kill the benefits of parallelism. If each assignment is atomic,
then a command a[i] := a[i] + 1 may have to be compiled as
lock(s); a[i] := a[i] + 1; unlock(s), where s is some compiler
generated lock.

For these reasons, we adopt the grainless approach of [1].
This approach defines all programs that contain data races to

The author would like to thank NSERC for funding this work.

be “wrong”. For example

(co a[i] := a[i] + 1 || a[j] := a[j] + 1 co)

is “wrong” for initial states where i = j. This puts the onus on
the programmer to ensure the absence of data races in their
programs. One way the programmer can do so is by using
explicit locks, replacing races for data with races for locks.

The rest of this paper outlines an approach to formalizing
the dynamic semantics of HARPO/L. A complete semantics
of the language is being developed as part of a complete de-
scription of the language. In adapting the semantic approach
of [1], the following differences arise: First, HARPO/L is a
more complex language than the toy language considered in
[1], including, for example, objects, complex lvalue expres-
sions, expressions that can go wrong, and rendezvous. Sec-
ond, HARPO/L allows read/read data races. Third, I take a
different approach to infinite computations and to computa-
tions that go wrong; these differences will be discussed fur-
ther in Section 5.

We proceed as follows: In Section 2 we discuss the con-
text in which programs are executed. This includes the object
structure of the program and the data states of the program.
Section 3 deals with lvalue expressions and value expressions.
The semantics here is almost a traditional denotational seman-
tics, but includes a twist to account for the fact that we need to
track which locations are needed to evaluate each expression.
In Section 4, we map commands to trace sets, which are sets
of sequences of actions, each action being atomic. Following
[1], I represent operations that access memory as two atomic
actions, one indicating the start of the operation and one rep-
resenting the end of the operation. I also give a semantics to
the traces. Finally, Section 5 compares our work with related
work and points the way to future developments.

2. CONTEXT

2.1. Object graph

HARPO/L is a static, object-based language, meaning that,
while programs are structured in terms of classes, all object

instantiation is done statically (at compile-time). The fully
semantics of the language involves three levels: the first level
explains the specialization of generic classes to specific classes;
the second level explains the instantiation of classes as ob-
jects; the third level explains the dynamic semantics of ob-
jects. This paper deals only with the dynamic semantics of
the language and so, as a starting point, we consider a data
structure that might be the output of the front-end of a com-
piler. This data structure consists of an object graph, a single
command, and an initial state. The purpose of the dynamic
semantics is to give the meaning of this command in the con-
text of the object graph.

An object graph consists of a number of sets and func-
tions. N is a set of identifiers. L is a set of locations. O
is a set of objects. A is a set of arrays. We will also use a
set V , which is the set of primitive values for a particular im-
plementation. The special value F indicates an expression
computation “gone wrong” and we’ll assume that it is outside
any of the above sets.

Each object o has a fixed set of field names fields(o) ⊆fin
N and for n ∈ fields(o), field(o, n) ∈ O∪L∪A. We’ll extend
the field function to wrong values by defining field(F, n) =
F, where n ∈ N . We assume that all local variables have
been replaced by object fields, so local variables are also ac-
cessed as fields.

Similarly, for each a ∈ A, there is a length length(a) ∈
N, and for v ∈ {0, .. length(a)},1 index(a, v) ∈ O ∪ L ∪ A.
For all other v ∈ V , define index(a, v) = F. We’ll also
define index(F, v) = index(a,F) =F.

The set of global objects is represented by a finite partial
function global ∈ N Ã O ∪ L ∪A .

Because of the static nature of HARPO/L, the global, fields,
field,methods, length, and index functions do not depend on
the state.

2.2. States

A state is a partial function σ ∈ Σ = (LÃ V). I’ll consider
each state to be equal to its graph, i.e. to the set of pairs that
defines it. The domain of a partial function f is written δ(f).

Two partial states are compatible exactly if they agree on
the intersection of their domains:

σ0 ` σ1 = ∀l ∈ δ(σ0) ∩ δ(σ1) · σ0(l) = σ1(l) .

Using the pun between states and their graphs, σ0 ` σ1 ex-
actly if σ0 ∪ σ1 is a state.

For location l and value v, let l 7→ v be the state such that
δ(l 7→ v) = {l} and (l 7→ v)(l) = v. Using the pun between
states and their graphs we have (l 7→ v) = {(l, v)}.

1The notation {i, ..k} means {j ∈ Z | i ≤ j < k}. We assume that
{0, .. length(a)} ⊆ V , for all arrays a.

If σ0 and σ1 are states, then σ0 1 σ1 is a state such that

δ(σ0 1 σ1) = δ(σ0) ∪ δ(σ1)

(σ0 1 σ1) (l) =

½
σ0(l) if l ∈ δ(σ0)
σ1(l) if l 6∈ δ(σ0) and l ∈ δ(σ1) .

3. EXPRESSIONS

We use two semantic functions for expressions: For lvalue
expressions E, we have [E]@ ⊆ Σ × (O ∪ L ∪A ∪ {F}).
For all expressionsE of primitive type (int, real etc.), we have
[E]$ ⊆ Σ× (V ∪ {F}).

If (σ, x) is in [E]@or [E]$, then evaluating E in any state
σ0 ⊇ σ, may yield result x, while reading exactly the locations
in δ(σ). For example, [a[i]]@ contains (l0 7→ 0, l1), where l0
is the location of i and l1 is the location of the first element
of array a; it also contains (l0 7→ −1,F); it does not contain
(l0 7→ 0 ∪ l1 7→ 13, l1), as location l1 is not accessed in
computing the location. Now [a[i]]$ contains (l0 7→ 0 ∪ l1 7→
13, 13) as well as (l0 7→ −1,F).

The defining equations for []@ and []$ are quite straight-
forward; I provide only a few examples here.2

[n]@ = {(∅, global(n))} , where n ∈ δ(global)

[E.n]@ = {(σ, o) ∈ [E]@ · (σ, field(o, n))}
[E[F]]@ = {(σ0, a) ∈ [E]@, (σ1, i) ∈ [F]$ | σ0 ` σ1·

(σ0 ∪ σ1, index(a, i))}
[E]$ = {(σ, l) ∈ [E]@, v ∈ VE | l ∈ L ∧ σ ` (l 7→ v) ·

(σ ∪ (l 7→ v) , v)} ∪ {(σ,F) ∈ [E]@ · (σ,F)}
The last equation applies only when E is an lvalue expression
of some primitive type; VE is the subset of V appropriate to
E’s type.

Nondeterministic expressions can be handled by this ap-
proach, but not expressions that change the state.

4. COMMANDS

The meaning of each command C is a set of traces (or se-
quences) of actions [C]!. We start with a discussion of traces.

4.1. Traces

Given an alphabet of symbols P , P ∗ is the set of all finite
traces over P , while Pω is the set of infinite traces. Let P∞ =
P ∗ ∪ Pω. We view traces as functions from initial segments
of N. The length#s of a trace s is |δ(s)|.

The catenation s; t of traces s and t in P∞ is standard; in
particular, s; t = s if s ∈ Pω.

2The notation {v ∈ S | P · E} means the set that contains exactly those
things that equal E for some value v ∈ S such that P . For exam-
ple {n ∈ N | n is prime · n2} is the set of squares of prime natural
numbers: {4, 9, 25, 49, · · · }. {v ∈ S ·E} means {v ∈ S | true ·E} and
{v ∈ S | P} means {v ∈ S | P · v}.

[E0 := E1]! = {(σ0, l) ∈ [E0]@, (σ1, v) ∈ [E1]$ | σ0 ` σ1 ∧ l 6=F ∧ v 6=F·
start(σ0 ∪ σ1, {l});fin(l 7→ v, δ(σ0) ∪ δ(σ1))}

(2)

∪ {(σ0, l) ∈ [E0]@, (σ1, v) ∈ [E1]$ | σ0 ` σ1 ∧ (l =F ∨ v =F) · chaos(σ0 ∪ σ1)}
[C0 C1]! = [C0]! ; [C1]! (3)
filter(E) =

©
σ | (σ, true) ∈ [E]$ · start(σ, ∅),fin(∅, δ(σ))

ª ∪ ©σ | (σ,F) ∈ [E]$ · chaos(σ)ª
[(if E C0 else C1 if)]! = filter(E); [C0]! ∪ filter(¬E); [C1]! (4)

[(wh E C wh)]! =
¡
(filter(E); [C]!)

∗ ;filter(¬E)¢ ∪ (filter(E); [C]!)ω (5)
[(co C0 || C1 co)]! = [C0]! || [C1]! (6)

enter(k,E) = (try({k})∞;acq(k);filter(¬E); rel(k))∞ ; try({k})∞;acq(k);filter(E)
enter(k) = try({k})∞;acq(k)

[(with E0 when E1 C with)]! =
S
(σ,k)∈[E0]@|k 6=Fstart(σ, ∅);fin(∅, δ(σ)); enter(k,E1); [C]! ; rel(k) (7)

∪ {(σ, k) ∈ [E0]@ | k =F · chaos(σ)}
[E.n()]! =

S
(σ,o)∈[E]@|o6=Fstart(σ, ∅);fin(∅, δ(σ)); rel(a(o, n)); enter(d(o, n)) (8)

∪ {(σ, k) ∈ [E0]@ | k =F · chaos(σ)}
[(accept n() C accept)o]! = enter(a(o, n)); [C]!; rel(d(o, n)) (9)

Fig. 1. Semantics for commands

A trace set S is any subset of P∞. For trace sets S and
T : S;T is the elementwise catenation of trace sets, S∗ is the
Kleene closure of S, Sω is the infinite catenation of S with
itself, and S∞ = S∗ ∪ Sω.

For two traces s and t, we define the fair merge s || t of
the traces as the trace set generated by breaking s and t into
any number of finite pieces that are then interleaved. The fair
merge of two trace sets S and T is S || T = Ss∈S,t∈T s || t.

As usual in formal language theory, I will pun between
a symbol p, trace hpi, and trace set {hpi}, when there is no
ambiguity; for example p; q = hpi ; hqi and p∗ = {hpi}∗.

4.2. Actions

Our symbol set P is a set of actions, borrowed in the main
from [1]. We describe actions informally here and formally
in Section 4.6. In each case σ is a state.

• start(σ,W), where W is a set of locations. This ac-
tion is enabled in states compatible with σ. It marks the
domain of σ as “being read” and marks all location in
W as “being written”.

• fin(σ,R), where R is a set of locations. This action
is always enabled. It updates the state according to σ.
The domain of σ is unmarked as “being written” and
the set R is unmarked as “being read”.

• chaos(σ).This action is enabled in states compatible
with σ. It is completely nondeterministic.

4.3. Command semantics

Now we are ready to give the trace sets associated with se-
quential commands. These are given in Figure 1.

A crucial command is assignment; see (2). If either ex-
pression evaluates toF, the trace simply a chaos action. For
other states, the trace consists of a start action and a fin action
with appropriate marking and unmarking of locations.

Sequential composition (3) is reflected by catenation of
trace sets. ‘If’ commands (4) and ‘while’ commands (5) are
defined with the help of the filter function. Parallel composi-
tion is simply a fair merge of the trace sets (6).

4.4. Lock actions

In HARPO/L objects implementing the Lock interface are
locks for conditional critical sections. At run-time each lock
has two states: locked and unlocked. The following actions
affect locks:

• try(K) is a failed attempt to acquire a lock in set K.
This action is enabled when all locks in K are locked.
It has no effect.

• acq(k) is a successful acquisition of lock k. This ac-
tion is enabled when lock k is unlocked; it locks k.

• rel(k) is the release of lock k. This action is always
enabled; it unlocks k.

(σ0, R0,W0,K0, true)
start(σ,W)
½

⎧⎪⎪⎨⎪⎪⎩
(σ0, δ(σ)]R0,W0 ∪W,K0, true)

if σ ` σ0 and δ(σ) ∩W0 = ∅ and W ∩ (W0 ∪R0) = ∅
(σ1, R1,W1,K1, ok1)

if σ ` σ0 and (δ(σ) ∩W0 6= ∅ or W ∩ (W0 ∪R0) 6= ∅)

(10)

(σ0, R0,W0,K0, true)
fin(σ,R)
½ (σ 1 σ0, R0 −R,K0,W0 − δ(σ), true) (11)

(σ0, R0,W0,K0, true)
chaos(σ)
½ (σ1, R1,W1,K1, ok1) if σ ` σ0

(σ0, R0,W0,K0, true)
try(K)
½ (σ0, R0,W0,K0, true) if K ⊆ K0

(σ0, R0,W0,K0, true)
acq(k)
½ (σ0, R0,W0,K0 ∪ {k} , true) if k /∈ K0

(σ0, R0,W0,K0, true)
rel(k)
½ (σ0, R0,W0,K0 − {k} , true)

(σ0, R0,W0,K0, false)
p
½ (σ1, R1,W1,K1, ok1)

Fig. 2. Semantics for actions

4.5. Interprocess synchronization

HARPO/L has two mechanisms for interprocess synchroniza-
tion: conditional critical sections and rendezvous.

Conditional critical sections, also known as ‘with’ com-
mands, are shown in (7). Except for the need to compute the
location of the lock object, this is essentially the same as in
[1], [3] and [4].

A rendezvous is an asymmetric communication mecha-
nism [5]. Simultaneously the client executes a method call
E.n()while, the server executes an ‘accept’ command, which
in its simplest form is3 (accept n() C)o. The server must
wait at an accept until there is a client ready to rendezvous.
The client must wait until the server is ready to execute the
‘accept’ command. The semantics for this simplest form of
rendezvous is shown in (8–9). There are two initially locked
locks associated with the method named n in object o: a(o, n)
is used for the server to wait for the client, while d(o, n) is
used for the client to wait for the server.

In their full generality, ‘accept’ commands are fairly com-
plex. Space does not permit a full exposition in the present
paper, although the details are worked out in the full semantic
description for the language. The full ‘accept’ command can
generalize the simplest form in three ways.

• ‘Accept’ commands can have both input and output pa-
rameters. To handle these, a protocol using up to five
locks is used: server waits for client, client waits before
copying input parameters, server waits before execut-
ing the method body, client waits before copying output
parameters, server waits until parameters are copied.

3Recall that classes have been instantiated to objects at an earlier stage.
We assume that, as part of instantiation, each ‘accept’ command has been
tagged with the object o that it appears in.

• ‘Accept’ commands can have multiple branches, so that
multiple methods can be implemented by the same ‘ac-
cept’ command. In that case the server first waits on
all a locks associated with the various methods. This is
why the ‘try’ action has a set of locks.

• ‘Accept’ commands can have boolean guard expres-
sions. These are evaluated first and govern which a
locks are waited on.

4.6. The semantics of traces

We supply a meaning to each trace by means of an opera-
tional semantics. In effect we define a nondeterministic state
machine for traces. Each trace then defines a binary rela-
tion on states of the machine. We call the states of this ma-
chine configurations, as the word ‘state’ is already in use
for the data state. Each configuration consists is a 5-tuple
(σ,R,W,K, ok) where σ is a total state, R is a multiset of lo-
cations currently being read, W is a set of locations currently
being written, K is a set of locks currently locked, and ok is a
boolean indicating that the computation has not gone wrong.
The R, W , and ok fields are purely fictions, there is no need
to actually represent them at run-time.

Each action p defines a binary relation
p
½ on configura-

tions. The meaning of each action is given in Fig 2. For a
given configuration x and action p there are three possibili-
ties.

• There exists no y such that x
p
½ y. Then we say that

the action is not enabled.

• For all y, x
p
½ y. In this case the computation has gone

wrong and anything can happen.

• Somewhere in between.

From (10), you can see that start actions are only enabled
in configurations where the state is compatible with the par-
tial state of the action. Then there are two possibilities. If
the action requires a read of a location currently being writ-
ten or a write of a location currently being read or written,
then the computation has gone wrong and any configuration
could be next. Otherwise, the locations are marked and the
computation proceeds. The fin actions (11) are a bit simpler,
they simply modify part of the state and release read and write
claims made in the corresponding start operation. The other
actions are straight-forward.

We can extend the relation to finite sequences as the least
relation such that x

ε½ x and x
ps
½ z if there exists y such

that x
p
½ y and y

s½ z. We extend it to infinite sequences by
saying that x

s½ z exactly if there is an infinite computation

x
s(0)
½ y1

s(1)
½ y2

s(2)
½ y3 · · · .

Now for a trace set S, x
S½ y exactly if ∃s ∈ S · x s½ y.

Each command C gives a relation
[C]!½ .

5. RELATED AND FUTURE WORK

The work presented here is strongly based on that in [1]. I
note the following differences:

• HARPO/L is a more complex language than that in [1].
It has objects, rendezvous, and expressions that can go
wrong.

• HARPO/L allows concurrent read operations. In [1],
partial states are used in the configuration with the miss-
ing part of the domain indicating which locations are
marked as unusable. I could not adopt this approach as
there are two ways in which locations can be unusable.
This leads to the use of the R and W (multi-)sets.

• I used a different approach to computations gone wrong.
Whereas [1] uses a special wrong value to indicate com-
putations gone wrong. I use chaotic computations, which
lead to a simpler formulation.

• I used a different approach to infinite computations.
Whereas [1] uses a special trace ⊥ to indicate infinite
computations. I use infinite traces. This leads to a sim-
pler formalization.

• In [1] the trace is part of the configuration. This seemed
unnecessary to me, as only the first action is actually
used.

• I used a try action that tries multiple locks. This change
is not necessary, the same effect can be had with inter-
leaving actions that each try only one lock. The moti-
vation is a cleaner approach to accept statements with
multiple branches.

The work here shows that with only moderate extensions
the approach of [1] can be extended to a more complex lan-
guage.

Two closely approaches have been developed by Brookes.
In [3], actions indicate individual reads and writes. In [4],
state changes from a number of statements are combined.
Thus purely sequential parts of the computation are given es-
sentially the semantics that they would be given in a two-state
sequential model. This latter approach is intriguing and may
form the basis of future work on the HARPO/L semantics.

Future work will include an investigation of equivalence
of traces and how it applies to the safety of optimizations.
Two traces s and t are equivalent, s ≡ t, iff for all x, y, and

u, (x
s||u
½ y) = (x

t||u
½ y). This notion of equivalence can

be applied to program optimization as follows. Let C and D
be two commands, the C is refined by D, written C v D, iff
∀s ∈ [D]! · ∃t ∈ [C]! · s ≡ t. Then a source level program
optimization f is safe on C if C v f(C). A similar idea can
be applied to low-level optimizations, as long as the effect on
the trace sets is clear. This notion of refinement is entirely
local and does not consider the context of the command.

The intermediate representation used in our compiler is a
form of dataflow graph. By giving a grainless semantics to
these graphs, we may be able to at least informally verify the
stage of the compiler that produces dataflow graphs.

6. REFERENCES

[1] John C. Reynolds, “Towards a grainless semantics for
shared-variable concurrency,” in Proc. 24th Conference
on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2004), 2005, vol. 3328 of
Lecture Notes in Computer Science, pp. 35–48.

[2] Theodore S. Norvell, “HARPO/L: A language for hard-
ware/software codesign.,” in Newfoundland Electrical
and Computer Engineering Conference (NECEC), 2008.

[3] Stephen Brookes, “A semantics for concurrent separation
logic,” Theoretical Computer Science, vol. 375, no. 1–3,
pp. 227–270, May 2007.

[4] Stephen Brookes, “A grainless semantics for parallel pro-
grams with shared mutable data,” Electronic Notes in
Theoretical Computer Science, vol. 155, pp. 277–307,
2006, Proceedings of the 21st Annual Conference on
Mathematical Foundations of Programming Semantics
(MFPS XXI).

[5] Jean D. Ichbiah, Bernd Krieg-Brueckner, Brian A. Wich-
mann, John G. P. Barnes, Olivier Roubine, and Jean-
Claude Heliard, “Rationale for the design of the Ada pro-
gramming language,” SIGPLAN Not., vol. 14, no. 6b, pp.
1–261, 1979.

