
Language Design for CGRA project. Design 6

[Draft].

Theodore S Norvell

Electrical and Computer Engineering

Memorial University

October 8, 2010

Abstract

Abstract to be done.

Change History

• 2006 Sept 18 Version 3

• 2007 August. Version 4.

• 2007 November. Version 5. Added constants

• Changed syntax of elseif

• Allowed name at the end of a class or interface

• 2008 Nov 3. Version 6

— Replaced atomic statement with “with statement”

— Added section on parallel access to locations

Meta notation

N → E An N can be E
(E) Grouping

E F An E followed by an F
E∗ Zero or more Es
E∗F Zero or more Es separated by F s
E+ One or more Es
E+F One or more Es separated by F s
E? Zero or one Es
[E] Zero or one Es

E | F Either an E or a F

1

1 Classes and Objects

1.1 Programs

A program is a set of classes, interfaces, and objects.

Program→ (ClassDecl | IntDecl | ObjectDecl | ConstDecl |;)∗

1.2 Types

Types come in several categories.

• Primitive types: Primitive types represent sets of value. As such they have
no mutators. However objects of primitive types may be assigned to, to
change their values. Primitive types represent such things as numbers.
They include

— int8, int16, int32, int64, int

— real16, real32, real64, real

— bool

• Classes: Classes represent sets of objects. As such they support methods
that may change the object’s state.

• Interfaces. Interfaces are like classes, but without the implementation.

• Arrays: Arrays may be arrays of primitives or arrays of objects.

• Generic types. Generic types are not really types at all, but rather func-
tions from some domain to types. In order to be used, generic types must
be instantiated.

Types are either names of classes, array types or specializations of generic
types

Type→ Name | Name GArgs | Type[Bounds]

Arrays are 1 dimensional and indexed from 0 so the bounds are simply one
number

Bounds→ ConstIntExp

1.3 Objects

Objects are named instances of types.

ObjectDecl→ obj Name [: Type] := InitExp

The Type may not be generic.
Initialization of an object can be an expression or an array initialization

2

InitExp→ Exp | ArrayInit | new Type(CArg+,)

|
(
if Exp then InitExp (else if Exp InitExp)∗ else InitExp [if]

)

ArrayInit→
(
for Name : Bounds do InitExp [for]

)

CArg → Exp

• If the object to be initialized is of a primitive type (such as int32 or
real64), the initExp should be a compile-time constant expression of a
type assignable to the type of the object.

• If the object to be initialized is an array, then the InitExp should be an
ArrayInitExp.

• If the object to be initialized is an object of non-primitive type, then
the InitExp should be of the form new Type(Args) where the Type is a
non-generic class type.

• Constructor arguments must either represent objects or compile time val-
ues, depending on whether the corresponding parameter is obj or in.

• In any case, the InitExp can be an if-else structure in which the expression
is a compile-time constant assignable to bool.

• The InitExp must have a type that is a subtype of the Type.

1.4 Constants

A constant is simply a named constant expression

ConstDecl→ const Name [: Type] := ConstExp

The type, if present must be primitive. Constant expressions are always primi-
tive.

1.5 Classes and interfaces

Each class declaration defines a family of types. Classes may be generic or
nongeneric. A generic class has one or more generic parameters

ClassDecl→ (class Name GParams? (implements Type+,)
?
constructor(CPar+,)

(ClassMember)∗ [class [Name]])

• The Name is the name of the class.

3

• The GParams is only present for generic classes, which will be presented
in a later section.

• The Types are the interfaces that the class implements.

An interface defines a type. Interfaces may be generic or nongeneric. A
generic interfaces has one or more generic parameters

IntDecl→
(
interface Name GParams? (extends Type+,)

? (IntMember)∗ [interface [Name]]
)

• The Name is the name of the class.

• The GParams will be presented in a later section.

• The Types are the interfaces that the interface extends.

Constructor parameters represent objects to which this object is connected.

CPar → obj Name : Type | in Name : Type

• Object parameters represent named connections to other objects. So for
example if we have

(class B constructor(obj x : A) ...)
obj a := (for i : 10 do new A())
obj b := (for i : 10 do new B(a0))

Then object b[0] knows object a[0] by the name of x.

• In parameters are compile time constants and the corresponding argument
must be such.

1.6 Class Members

Class members can be fields, methods, and threads. [Nested classes and inter-
faces are a possibility for the future.]

ClassMember → Field |Method | Thread | ConstDecl | ;

Fields are objects that are within objects. Field declarations therefore define
the part/whole hierarchy.

Field→ Access obj Name[: Type] := InitExp

Access→ private | public

Method declarations declare the method, but not its implementation. The
implementation of each must be embedded within a thread.

Method→ Access proc Name((Direction [Name :] Type)
∗,
)]

Direction→ in | out

4

The types of parameters must be primitive.
Recommended order of declarations is

• public methods and fields, followed by

• private methods and fields, followed by

• threads.

There is no ‘declaration before use rule’. Name lookup works from inside
out.

1.7 Interface Members

Interface’s members can be fields and methods. [Nested classes and interfaces
are a possibility for the future.]

IntMember → Field |Method | ConstDecl | ;

2 Threads

Threads are blocks executed in response to object creation.

Thread→ (thread Block [thread])

Each object contains within it zero or more threads. Coordination between
the threads within the same object are the responsibility of the programmer.
All concurrency within an object arises from the existence of multiple threads in
its class. Thus you can write a monitor (essentially) by having only one thread
in a class.

2.1 Statements and Blocks

A block is simply a sequence of statements and semicolons

Block → (Statement | ;)∗

Statements as follow

• Assignment statements

Statement→ ObjectIds := Expressions

ObjectIds→ ObjectId (, ObjectId)∗

Expressions→ Expression (, Expression)∗

ObjectId→ Name | ObjectId[Expression] | ObjectId.Name

The type of the ObjectId must admit assignment, which means it should
be a primitive type, like int32 or real64.

5

• Local variable declaration

Statement→ obj Name[: Type] := InitExp Block

Same restrictions as fields. The type may be omitted, in which case it
is inferred from the initialization expression. The block part contains as
many statements as possible. The scope of a local variable name is the
block that follows it.

• Constant Declarations

Statement→ ConstDecl Block

The block part contains as many statements as possible. The scope of a
local constant name is the block that follows it.

• Method call statements

Statement→ ObjectId.Name(Args)

| Name(Args)

Args→ [Expressions]

• Sequential control flow

Statement→
(
if Expression [then] Block (else if Expression [then] Block)∗(else Block)? [if]

)

|
(
wh Expression [do] Block [wh]

)

|
(
for Name : Bounds [do] Block [for]

)

• Parallelism

Statement→
(
co Block (|| Block)+ [co]

)

|
(
co Name : Bounds [do] Block [co]

)

In the second case, the Bounds must be compile-time constant.

• Method implementation.

Statement→
(
acceptMethodImp (|MethodImp)∗ [accept]

)

MethodImp→ Name((Direction Name : Type)∗,) [Guard] Block0 [then Block1]

Guard→ when Expression

— Restrictions

∗ The directions and types must match the declaration.

6

∗ The guard expression must be boolean.

∗ Each method may only be implemented once per class

— Possible restrictions:

∗ The guard may not refer to any parameters.

∗ The guard may refer only to the in parameters.

— Semantics: A thread that reaches an accept statement must wait
until there is a call to one of the methods it implements and the
corresponding guard is true. Once there is at least one method the
accept can execute, one is selected. Input parameters are passed in,
Block0 is executed and finally the output parameters are copied back
to the calling thread. If there is a Block1 it is executed next.

• Locking

Statement→
(
with Exp [Guard] [do] Block [with]

)

— Restrictions:

∗ The Exp must refer to an object of type Lock.

∗ The guard expression must be boolean

— Semantics:

∗ The block (including the guard) is executed as if atomically with
respect to other with statements sharing the same lock

∗ If there is no guard, it defaults to true.

∗ If the guard is false, then the lock is unlocked and then everything
starts again.

∗ In summary the sematics is like this

lock(Exp)
(wh not Guard do unlock(Exp) lock(Exp))
Block

unlock(Exp)

3 Parallel access to data locations

Each object of a primitive type, including array items, is a separate location.
Access to a location is either a read access or a write access. Accesses are not
considered to be atomic, but rather to take a span of time. As such two accesses
that could overlap in time must not be to the same location – except that we
will allow read accesses to overlap. If two accesses could overlap in time, we
say that they “could happen at the same time”. Suppose that a and b are two
accesses from separate threads that could happen at the same time

7

• Parallel read accesses are allowed. If a and b are both reads, behaviour is
well defined.

• Parallel write accesses are not allowed. If a and b are both writes, then
behaviour is undefined.

• Parallel read and write accesses are not allowed. If a is a read and b is a
write (or the other way around), then behaviour is undefined.

The compiler may or may not diagnose undefined behaviour. The reason
is that aliasing makes it impossible to tell for sure whether the behaviour of a
program is well defined or undefined. Consider

(co a[i] := 0 || a[j] := 0 co)

In states where i = j, behavour is undefined. In states where � i �= j, but where
i and j are in bounds, behaviour is well defined. Since the values of i and j are
(in general) unknowable at compile time, the compiler is not in a position to
diagnose undefined behaviour, although a good compiler may warn that it can
not rule out undefined behaviour. Note that the fact that both statements are
writing the same value makes no difference to whether the parallel accesses are
well-defined.

The programmer may prevent accesses from occuring at the same time using
locks:

(co (with l a[i] := 0) || (with l a[i] := 1))

In this example, the parallel accesses are well defined because they can not take
place at the same time.

Accesses may also be protected via other synchronization mechanisms. For
example

(co s.p() a[i] := 0 s.v() || s.p() a[i] := 1 s.v() co)

Is well defined if the p and v methods of object s somehow prevent the accesses
from occurring at the same time. Method calls serve as “synchonization points”.

Here is one more example.

obj l : Lock := new Lock()
obj s := 1
(co

(with l when s = 1 s := 0)
a[i] := 0
(with l s := 1)

||

(with l when s = 1 s := 0)
a[i] := 1
(with l s := 1)

8

co)

In this case, the assignments to a[i] can not happen at the same time and so the
result is well defined (though nondeterministic). In particular the compiler can
not move the assignment to a[i] any earlier or later in the threads. This means
that with statements, like method calls, serve as “synchronization points.”

One might at first think that there is no need to protect the assignments
s := 1, in the previous example, with with statements. This is not so; there
is a read access in the other process that could happen at the same time. The
following program’s behaviour is undefined.

obj l : Lock
obj s := 1
(co

(with l when s = 1 s := 0)
a[i] := 0
s := 1 // Wrong. Access is unprotected.

||

(with l when s = 1 s := 0)
a[i] := 1
s := 1 // Wrong! Access is unprotected.

co)

A compiler optimizing this program, might look at the sequence a[i] := 1 s := 1
and decide to reorder the statements to s := 1a[i] := 1 and that would be
legitimate in the sense that any change to an undefined program can not make
it more wrong.

While sequential programming constructs impose an nominal order on exe-
cution, a compiler is welcome to reorder accesses that are to different locations
(or that are both read accesses). For example the program a := 1 b := 1 says
that a should be written first, nominally. However as a and b are different loca-
tions, the statement can be rewritten to b := 1a := 1. The compiler can assume
that there are no parallel accesses to a or b that could happen at the same time,
as such accesses would make the program undefined and there is nothing the
compiler can do to an undefined program to make it more wrong. Thus the
compiler is welcome to make any sequential optimizations to code that appears
between synchronization points. The following are synchronization points:

• The start of a with statement.

• The end of a with statement

• The start of an accept statement

• The return from an accept statement

• Any method call (after argument evaluation)

9

4 Expressions

[[To Be Completed]]

5 Genericity

Classes and interfaces can be parameterized by “generic parameters”. The effect
is a little like that of Java’s generic classes or C++’s template classes. Classes
and interfaces may be parameterized, in general, by other classes and interfaces,
values of primitive types, for example integers, and objects.

Programs using generics can be expanded to programs that do not use gener-
ics at all. For example a program

(class K ... class)
(class G{ type T } ...T... class)
obj g : G{K} := ...

Expands to

(class K ... class)
obj k : K
(class G0 ...T... class)
obj g : G0 := ...

Generic parameters may be one of the following

• Nongeneric Types

• Nongeneric Classes

GParams→
{
GParam+,

}

GParam→ type Name [extends Type]

GArgs→ {Type+,}

6 Examples

(class FIFO {type T extends primitive}

constructor(in capacity : int)

public proc deposit(in value : T)
public proc fetch(out value : T)

10

private obj a : T(capacity)
private obj front := 0
private obj size := 0

(thread

(wh true

(accept
deposit(in value : T) when size < capacity

a[(front + size] % capacity) := value
size := size + 1

|
fetch(out value : T) when size > 0

value := a[front]
front := (front + 1) % capacity
size := size - 1

accept)

wh)

thread)

class)

7 Lexical issues

11

