
A Grainless Semantics for HARPO/L

Theodore S. Norvell
Computer Engineering Research Labs

Memorial University

December 21, 2010

DRAFT. Typeset December 21, 2010

Abstract

A grainless semantics follows the following three principles quoted from John
Reynolds [[citation]]:

– Operations have duration and can overlap each other during execution.
– If two overlapping operations touch the same location, the meaning of the

program execution is “wrong”.
– If, from a given starting state, execution of a program can give “wrong”, then

no other possibilities need be considered.
In HARPO/L, we modify the second principle slightly by allowing parallel oper-

ations to simultaneously read locations.
Following the work of Reynolds [[citation]] we provide a semantics in three steps.

The first is a denotational semantics of the language’s expressions. This semantics
gives not only the possible values of each expression in each state, but also gives
the portion of the state that needs to be read to compute the value. The second
gives a denotational semantics of commands by mapping each command into a set
of sequences of actions. Each action is considered to take no time. Operations that
would normally take a period of time, such as reading and writing memory, are split
into two actions: one indicates the start of the operation and one indicates the end
of the operation. For the duration of such an operation, memory locations are either
read-locked or write-locked. The third step is to give an operational semantics for
traces.

0 List of symbols

Names n, b, c ∈ N . And sans serif is used for name constants in examples.

0

Locations l ∈ L
Sets and bags of locations R,W ∈ P(L) or R ∈ B(L)
Objects: o, k ∈ O, K ⊆ O
Arrays a ∈ A
Methods m ∈M
Numbers i, j ∈ N
Boolean values: ok ∈ B
Values v ∈ V
States σ ∈ Σ
Expressions E
Commands C
Actions p, q, r ∈ P
Traces s, t, u ∈ P∞

Trace sets S, T, U ⊆ P∞

Configurations x, y, z ∈ Z, X, Y ⊆ Z

1 Context

We assume that the source program has already gone through static checking, generic
specialization, and object instantiation phases. In other words that the program has been
compiled to an object graph, an initial state, and a single command. The context for a
HARPO/L command consists of a static part, which is the object graph, and a dynamic
part which is the state.

1.0 Object Graph

For each program, the object graph is described by 5 sets and a number of functions. The
sets are:

• N, a set of identifiers.

• L, a set of locations.

• O a set of objects. Note that this set is fixed as there is no allocation or deallocation.

• A is a set of arrays. Each array has a fixed length length(a).

• M is a set of methods.

1

We will also use a set V , which is the set of primitive values for a particular implemen-
tation.

The special value � indicates an expression computation “gone wrong” and we’ll as-
sume that it is outside any of the above sets.

Each object has a fixed set of field names fields(o) ⊆fin N and for n ∈ fields(o),
field(o, n) ∈ O ∪ L ∪ A. We’ll extend the field function to wrong values by defining
field(�, n) = �, for all n ∈ N . We assume that all local variables have been replaced by
object fields, so local variables are also accessed as fields.

Each object has a fixed set of method names methods(o) ⊆fin N and for n ∈ methods(o),
method(o, n) ∈M . We have method(�, n) =�, for all n ∈ N .

Similarly, for each a ∈ A, and v ∈ {0, .. length(a)}, index(a, v) ∈ O∪L∪A. (We assume
{0, .. length(a)} ⊆ V , for all arrays a.) For all other v ∈ V , define index(a, v) = �. We’ll
also define index(�, v) = index(a,�) =�.

The set of global entities is represented by a finite partial function global ∈ N �

O ∪ L ∪ A .
Because of the static nature of HARPO/L, the global, fields, field, methods, method,

length, and index functions do not depend on the state.

1.1 States

As mentioned above V is a set of primitive values.
A state is a partial function σ ∈ Σ = (L � V). States may be considered as sets of

pairs, as the source (L) and the target (V) are always the same. Thus I’ll deliberately
ignore any distinction between a state and its graph (i.e. its set of pairs).

The domain of σ is written δ(σ).
Two partial functions are compatible if they agree on the intersection of their domains:

σ0 � σ1 = ∀l ∈ δ(σ0) ∩ δ(σ1) · σ0(l) = σ1(l) .

If σ0 � σ1, then, using the pun between states and their graphs, σ0 ∪ σ1 is a state too.
If l is a location and v is a value, then l �→ v is the state such that δ(l �→ v) = {l} and

(l �→ v)(l) = v. Using the pun between states and their graphs we have (l �→ v) = {(l, v)}.
If σ0 and σ1 are states, then σ0 + σ1 is a state such that

δ(σ0 + σ1) = δ(σ0) ∪ δ(σ1)

(σ0 + σ1) (l) = σ0(l) if l ∈ δ(σ0)

(σ0 + σ1) (l) = σ1(l) if l �∈ δ(σ0) and l ∈ δ(σ1) .

Note that
σ0 + σ1 = σ1 + σ0 = σ0 ∪ σ1, when σ0 � σ1 .

I’ll generally use σ0 ∪ σ1 in this case to emphasize the symmetry of the operation and the
compatibility of the states.

2

2 Expressions

The semantics of each expression E is a set of pairs [E]$ each in Σ × (V ∪ {�}). For
example:

• Literals

[E]$ = {(∅, v)} , where E is a literal and v is the corresponding value.

• Addition0

[E0 + E1]$ =
{
(σ0, v0) ∈ [E0]$, (σ1, v1) ∈ [E1]$ | σ0 � σ1 ·

(
σ0 ∪ σ1, v0+̂v1

)}

where , v0+̂v1 = v0 + v1 when v0,v1 ∈ V and v0+̂v1 = � otherwise. The meaning of
+ here is actually determined by the rules based on the static types of E0 and E1.

• Other expressions are similar

• Tuples. Although tuples are not part of the language, we will need this when we
treat the matter of guards in rendezvous:

[(E0, E1)]$ =
{
(σ0, v0) ∈ [E0]$, (σ1, v1) ∈ [E1]$ | σ0 � σ1 · (σ0 ∪ σ1, (v0, v1))

}

2.0 LValue expressions and fetches

An lvalue expression is one that refers to a location, array, or object.
We assume that all lvalue expressions have been rewritten during the initialization

phase to fully qualified form. I.e., each lvalue expression is of the form

nq0q1...qm ,

where n is the name of a global and each qualifier qi is either of the form .n where n is a
field name or [E] where E is an expression of integer type. Recall that we are assuming
that local variables have been converted to fields and so they are treated the same as fields.

The semantics of each lvalue expression E is a set of pairs [E]@ each in Σ×(O ∪ L ∪ A ∪ {�})
as follows:

0The set {v ∈ S | P · E} contains exactly those things that equal Ev
a

for some value a ∈ S of variable(s)
v satisfying boolean expression P v

a
. For example

{
n ∈ N |n is prime · n2

}
is the set of squares of prime

natural numbers: {4, 9, 25, 49, · · · }.
If the “| P” is omitted, it defaults to “| true” .
The generalization to more than one variable is obvious. E.g. {m ∈M,n ∈ N |m is prime ∧ n is prime ·m× n}

is {4, 6, 9.10, 14, · · · }.

3

• A name by itself must refer to a global. Static checks and the nature of fully qualified
names will ensure n ∈ δ(global).

[n]@ = {(∅, global(n))}

• Field lookup.
[E.n]@ = {(σ, o) ∈ [E]@ · (σ, field(o, n))}

Static checks will ensure that o ∈ O ∪ {�} and that n ∈ fields(o) if o ∈ O. Recall
that if o =�, then field(o, n) =� too.

• Array lookup.

[E[F]]@ = {(σ0, a) ∈ [E]@, (σ1, i) ∈ [F]$ | σ0 � σ1 · (σ0 ∪ σ1, index(a, i))}

Static checks will ensure that a ∈ A∪{�} and that i is at least of a reasonable type,
if it is not �. Static checks do not ensure that i is in range, but the way we defined
the index function, is such that index(a, i) = � if i is not in range. Recall that if
a =� or i =�, then index(a, i) =� too.

Now we can define the semantics of fetches.

• Where E is an lvalue expression, let VE be the subset of values of E’s type, then
define

[E]$ = {(σ, l) ∈ [E]@, v ∈ VE | l ∈ L ∧ σ � (l �→ v) · (σ ∪ (l �→ v) , v)}

∪ {(σ,�) ∈ [E]@ · (σ,�)} .

The static checks will have ensured that, for any lvalue expression E for which [E]$
is relevant, [E]@ ⊆ Σ × (L ∪ {�}), so the two cases covered here suffice. I.e. there
is no need to define [E]$ where [E]@ may result in an array or an object, as no valid
program will need to fetch an array or an object.

2.1 Discussion

Traditional denotational semantics uses total states (i.e. states that are total functions).
By using partial functions, we can capture additional information in the semantics of
states. This is the set of locations that needs to be read in order to compute the value of
the expression. This set is the footprint of the expression. If (σ, v) ∈ [E]$, then δ(σ) is a
footprint that can be used to compute the value v for the expression E.

4

Here are some examples. Consider a program with three global int variables called i, j
and k and one global array called a. We’ll assume

global(a) = a0 ∈ A

length(a) = 3

index(a, 0) = l0 ∈ L

index(a, 1) = l1 ∈ L

index(a, 2) = l2 ∈ L

global(i) = l3 ∈ L

global(j) = l4 ∈ L

global(k) = l5 ∈ L .

The lvalue semantics [i]@ of the lvalue expression i equals

{(∅, l3)} ;

the domain of state ∅ is set ∅ corresponding to the fact that no fetches are done to compute
the location.

The expression semantics [i]$ of the expression i includes the following

(l3 �→ 0, 0) , (l3 �→ 42, 42) , etc

but not
(l3 �→ 42 ∪ l0 �→ 0, 42) ,

for example, as the value of location l0 can not be accessed in the computation. The
expression semantics [i]$ also does not include

(l3 �→ 0, 1)

as, in a state where i is 0, the fetch will not result in 1.
The lvalue semantics [a[i]]@ of the lvalue expression a[i] includes

(l3 �→ 0, l0), (l3 �→ 1, l1), and (l3 �→ −1,�) .

The expression semantics [a[i]]@ of a[i] includes

(l0 �→ 23 ∪ l3 �→ 0, 23), (l1 �→ 42 ∪ l3 �→ 1, 42) , and (l3 �→ −1,�) .

The examples give deterministic semantics in the sense that [E]$ is the graph of a
partial function in Σ � (V ∪ {�}). There is no requirement that expression evaluation
be deterministic. For example we could define an choice expression

E0�E1

5

such that

[E0�E1]$ =
{
(σ0, v0) ∈ [E0]$, (σ1, v1) ∈ [E1]$, v ∈ {v0, v1} | σ0 � σ1 · (σ0 ∪ σ1, v)

}

(The choice is made between values, rather than which expression to evaluate.) Nondeter-
minism could be quite useful in dealing with floating point numbers.

That expressions do not have side effects, on the other hand, is built in to the semantic
formalism.

3 Commands

3.0 Traces

Given an alphabet of atoms P , P ∗ is the set of all finite traces over P , i.e.

P ∗ =
⋃

n∈N

({0, ..n} → P) ,

while P ω is the set of infinite traces, i.e. N → P . Let P∞ = P ∗ ∪ Pω. Finite traces may
be written as 〈p, q, r〉.

The length of a trace #s is |δ(s)|. So that

(#s = ℵ0) = (s ∈ Pω) and (#s ∈ N) = (s ∈ P ∗) ,

for any s ∈ P∞.
The catenation s; t of traces s and t in P∞ is

#(s; t) = ℵ0 if s ∈ P ω or t ∈ Pω ,

#(s; t) = #s+#t otherwise ,

(s; t) (i) = s(i), for all i ∈ N such that i < |s| , and

(s; t)(i) = t(i−#s), for all i ∈ N such that i ≥ #s .

In particular, s; t = s if s ∈ Pω.
A trace set S is any subset of P∞.
We can define, for trace sets S and T and i ∈ N,

S;T = {s, t | s ∈ S, t ∈ T · s; t}

Si = S;S; ...;S︸ ︷︷ ︸
i times

S∗ =
⋃

i∈N

Si

Sω = S;S; ...

S∞ = S∗ ∪ Sω .

6

For two traces s and t, we define the fair interleaving s � t of the traces as the trace set

{s0, s1, · · · , t0, t1, . . . ∈ P ∗ | s = s0; s1; . . . ∧ t = t0; t1; . . . · s0; t0; s1; t1; · · · } ,

where any of the pieces could be empty, but all are finite. As this definition involves
an unbounded (and possibly infinite) number of variables, we make it more precise. For
given s and t, suppose f : δ(s; t) → {0, 1} and f doesn’t get infinitely stuck at one value:
∀i ∈ N · ¬∀j ∈ N · i+ j ∈ δ(f) ∧ f(i+ j) �= f(i). Define

mergef(s, t) : δ(s; t)→ P

mergef(s, t)(i) =

{
s(i−

∑
j∈{0,..i} f(j)) if f(i) = 0

t(
∑

j∈{0,..i} f(j)) if f(i) = 1

The fair interleaving of two traces is

s � t =
{
f | f is as above ·mergef (s, t)

}

The fair interleaving of two trace sets S and T is

S � T =
⋃

s∈S,t∈T

s � t

As usual in formal language theory, I will pun between an atom p, trace 〈p〉, and trace
set {〈p〉}, when there is no ambiguity; for example p; q = 〈p〉 ; 〈q〉 = 〈p, q〉 and p∗ = {〈p〉}∗.

3.1 Command semantics

For our purposes the set of atoms P is a set of actions, which will be defined below, bit by
bit, as needed. The semantic function for commands maps each command C to a trace set

[C]! ⊆ P∞ .

3.2 Assignment

[E0 := E1]! =

{
(σ0, l) ∈ [E0]@, (σ1, v) ∈ [E1]$ | σ0 � σ1 ∧ l �=� ∧ v �=�·
start(σ0 ∪ σ1, {l});fin(l �→ v, δ(σ0) ∪ δ(σ1))

}

∪

{
(σ0, l) ∈ [E0]@, (σ1, v) ∈ [E1]$ | σ0 � σ1 ∧ (l =� ∨ v =�)·
chaos(σ0 ∪ σ1)

}

7

3.2.0 Example

For example, [i := j]! includes

start(l4 �→ 99, {l3});fin(l3 �→ 99, {l4}) .

While [i := i+ j]! includes

start(l3 �→ 34 ∪ l4 �→ 99, {l3});fin(l3 �→ 133, {l3, l4}) .

3.3 Configurations

We understand the meaning of commands in two steps. The first step is the semantic
function []! which maps each command to a set of traces. The second step explains each
trace by its effect on an abstract machine.

Before going any further, we’ll try to understand the meaning of the trace sets generated
by command assignment commands.

A configuration is a 5-tuple (σ,R,W,K, ok) ∈ Z consisting of

• σ, a total state, i.e. a total function from L to V ,

• R, a bag (multiset) of locations that may currently be being read,

• W , a set of locations that may currently be being written,

• K, a set of locks that are locked, and

• ok, a boolean indicating that the computation has not gone wrong.

3.4 Actions

A relation x
p
� y on configurations shows how the machine can evolve in one step under

the influence of an action p.
For a given action p and configuration x, there are three possibilities:

• x
p
� y for no y. In this case we have met a dead end. This happens when the action

a is not applicable to x. For example the action start(l4 �→ 99, {l3}) that arises from
the assignment i := j, is not applicable in a state where j is anything but 99.

• x
p
� y for all y. In this case the computation is undefined from this point on. Any-

thing could happen. This is what the chaos action is for. It indicates a computation
gone wrong. Computations also blow up if they need to read a location that is being
written, need to write a location that is being read, or need to write a location that
is being written. When x is not ok, this will always be the case.

8

• x
p
� y for one or more y, but not for all. Typically only one y will do. In this case

the computation proceeds to the next configuration. As mentioned above, this case
only arises when x is ok; by convention y will also be ok.

(σ0, R0,W0, K0, true)
start(σ,W)
�

(σ0, δ(σ) �R0,W0 ∪W,K0, true)
if σ � σ0 and δ(σ) ∩W0 = ∅ and W ∩ (W0 ∪R0) = ∅

(σ1, R1,W1,K1, ok 1)
if σ � σ0 and (δ(σ) ∩W0 �= ∅ or W ∩ (W0 ∪R0) �= ∅)

(σ0, R0,W0, K0, true)
fin(σ,R)
� (σ + σ0, R0 − R,K0,W0 − δ(σ), true)

(σ0, R0,W0, K0, true)
chaos(σ)
� (σ1, R1,W1, K1, ok 1) σ � σ0

(σ0, R0,W0, K0, false)
p
� (σ1, R1,W1, K1, ok 1)

The additive union δ(σ) � R0 yields a bag which contains every element of the set
δ(σ) one more time than does the bag R0, and contains everything else the same number
of times as does R0. Conversely the bag subtraction R0 − R yields a bag that contains
each element of set R one time less than does R0 (down to a minimum of zero times) and
contains everything else the same number of times as does R0.

The last rule says that a computation that is not ok can lead to any configuration at
all. This ensures that once a computation has gone wrong it can not be recovered from,
unequivocally.

3.4.0 Examples

Let’s look at some examples. In these examples, I’ll only show the relevant parts of the
state.

As we saw earlier [i := j]! includes

〈start(l4 �→ 99, {l3}),fin({(l3, 99)} , {l4})〉 .

In a state l3 �→ 10 ∪ l4 �→ 99 with no initial read or write locks what happens?

((l3 �→ 10 ∪ l4 �→ 99) , ∅, ∅, ∅, true)
start(l4�→99,{l3})

� ((l3 �→ 10 ∪ l4 �→ 99) , {l4} , {l3} , ∅, true)
fin(l3�→99,{l4})

� ((l3 �→ 99 ∪ l4 �→ 99) , ∅, ∅, ∅, true) .

In the same state, l3 �→ 10 ∪ l4 �→ 99, but a different trace from [i := j]!

〈start(l4 �→ 23, {l3}),fin(l3 �→ 23, {l4})〉 ,

9

no transition is possible. Finally, consider if there is initially a write lock on l3:

((l3 �→ 10 ∪ l4 �→ 99) , ∅, {l3} , ∅, true)
start(l4 �→99,{l3})

� y ,

for all configurations y. In a sense the computation blows up.

3.5 Control constructs

Sequential composition means catenate the possible traces

[C0 C1]! = [C0]! ; [C1]! .

For boolean expression E, define

filter(E) ⊆ P∞

filter(E) =
{
σ | (σ, true) ∈ [E]$ · 〈start(σ, ∅),fin(∅, δ(σ))〉

}

∪
{
σ | (σ,�) ∈ [E]$ · 〈chaos(σ)〉

}
.

For a boolean expression E, static checks and the semantics of expressions will ensure that
[E]$ ⊆ Σ× {false, true,�} and that, for any σ,

if (σ, true) ∈ [E]$ then (σ, false) ∈ [¬E]$

and
if (σ, false) ∈ [E]$ then (σ, true) ∈ [¬E]$.

Now
[(if E C0 else C1 if)]! = filter(E); [C0]!

∪ filter(¬E); [C1]! .

While loops

[(wh E C wh)]! = ((filter(E); [C]!)
∗ ; filter(¬E)) ∪ (filter(E); [C]!)

ω .

Parallelism
[(co C0 � C1 co)]! = [C0]! � [C1]! .

3.6 Mutual exclusion

To deal with statements, we need some new actions

[(with E0 C with)]! =
⋃

(σ,k)∈[E0]@|k 	=�

start(σ, ∅);fin(∅, δ(σ)); enter(k); [C]! ; rel(k)

∪ {(σ, k) ∈ [E0]@ | k =� · 〈chaos(σ)〉}

10

where
enter(k) = try({k})∞; acq(k) .

The static semantics will ensure that, if (σ, k) ∈ [E0]@, then k ∈ O∪{�} and that if k ∈ O
then the object implements the Lock interface.

When there is a guard we have

[(with E0 when E1 C with)]! =
⋃

(σ,k)∈[E0]@|k 	=�

start(σ, ∅);fin(∅, δ(σ)); enter(k, E1); [C]! ; rel(k)

∪ {(σ, k) ∈ [E0]@ | k =� · 〈chaos(σ)〉} ,

where

enter(k, E) ⊆ P∞

enter(k, E) = (try({k})∞; acq(k); filter(¬E); rel(k))∞ ; try({k})∞;acq(k); filter(E) .

3.7 Actions for locks

We need a meaning for the three new actions.

(σ0, R0,W0,K0, true)
try(K)
� (σ0, R0,W0, K0, true) if K ⊆ K0 ,

(σ0, R0,W0,K0, true)
acq(k)
� (σ0, R0,W0, K0 ∪ {k} , true) if k /∈ K0 ,

(σ0, R0,W0,K0, true)
rel(k)
� (σ0, R0,W0, K0 − {k} , true) .

3.8 Rendezvous

3.8.0 Simple rendezvous

Accept statements and calls are rather complicated. We start with the simplest case of

(accept n() C accept) .

For each object o belonging to the class in which this statement appears we need two locks
a(o, n) and d(o, n). In the initial configuration, all these locks are in the lock set, meaning
they are locked.

Now a call by a client is

[E.n()]! =
⋃

(σ,o)∈[E]
@
|o	=�

start(σ, ∅);fin(∅, δ(σ)); rel(a(o, n)); enter(d(o, n))

∪ {(σ, k) ∈ [E0]@ | k =� · 〈chaos(σ)〉} .

11

The server’s semantics, where o is the object containing the server thread,

[(accept n() C accept)]! = enter(a(o, n)); [C]!; rel(d(o, n))

The locks here are being used as binary semaphores, with rel(k) being a V operation
and enter(k) being a P operation. As the computation proceeds, the lock set evolves as

{a(o, n), d(o, n)}
client releases a(o,n)

→ {d(o, n)}
server acquires a(o,n)

→

{a(o, n), d(o, n)}
the body executes

→ {a(o, n), d(o, n)}
server releases d(o,n)

→

{a(o, n)}
client acquires d(o,n)

→ {a(o, n), d(o, n)}

3.8.1 Choice

Next we consider two methods that are both implemented by the accept statement.The
semantics of calls remains the same:

(accept n0() C0 | n1() C1 accept) .

The server is

[(accept n0() C0 | n1() C1 accept)]!

= try({a(o, n0), a(o, n1)})
∞;

(
acq(a(o, n0)); [C0]!; rel(d(o, n0))

∪ acq(a(o, n1)); [C1]!; rel(d(o, n1))

)
.

The implementation is no longer in terms of standard semaphore operations, as the try
and acq actions are now split up and can not be put back together. Effectively, the server
waits on several semaphores at once and then behaves differently depending on which one
is successfully acquired.

The extention to more than two branches is straight forward.

3.8.2 Guards

Guarded accepts look like this:

(accept n0() when E0 C0 | n1() C1 when E1 accept) .

The semantics of guards is that they are evaluated once at the start of the accept
statement and never again. To simplify the semantics, we break the sequence into three
phases: evaluation of all the guards, waiting for a suitable call, and everything else.

[(accept n0() when E0 C0 | n1() C1 when E1 accept)]!

=

⋃
v∈B2 phase0 (v, (E0, E1)); phase1 (v, n0, n1); phase2 (v, n0, n1, C0, C1)

∪
{
(σ, v) ∈ [(E0, E1)]$ | v(0) =� ∨ v(1) =� · 〈chaos(σ)〉

}
.

12

The first phase is the evaluation of the guards.

phase0 (v, (E0, E1)) =
⋃

(σ,v)∈[(E0,E1)]$

start(σ, ∅);fin(∅, δ(σ)) .

The second phase is waiting

phase1 ((true, true) , n0, n1) = try({a(o, n0), a(o, n1)})
∞

phase1 ((true, false) , n0, n1) = try({a(o, n0)})
∞

phase1 ((false, true) , n0, n1) = try({a(o, n1)})
∞

phase1 ((false, false) , n0, n1) = try(∅)∞ .

The final phase is everything else

phase2 ((true, true) , n0, n1, C0, C1) =

(
acq(a(o, n0)); [C0]!; rel(d(o, n0))

∪ acq(a(o, n1)); [C1]!; rel(d(o, n1))

)

phase2 ((true, false) , n0, n1, C0, C1) = acq(a(o, n0)); [C0]!; rel(d(o, n0))

phase2 ((false, true) , n0, n1, C0, C1) = acq(a(o, n1)); [C1]!; rel(d(o, n1))

phase2 ((false, false) , n0, n1, C0, C1) = 〈miracle〉 .

The miracle action is an action that is never enabled. Phase 1 together with the first
action of phase 2 mean try until at least one of a set of locks is available and then acquire
one lock in that set. When the set is empty, this forces an infinite sequence of trys.

3.8.3 Early return

In an accept statement, it is possible to return early. The client and server then proceed
in parallel. The syntax (without guards) is

(accept n0() C0 then D0 | n1() C1 then D1 accept) .

The server semantics is

[(accept n0() C0 then D0 | n1() C1 then D1 accept)]!

= trys(a(o, n0), a(o, n1));

(
acq(a(o, n0)); [C0]!; rel(d(o, n0)); [D0]!

∪ acq(a(o, n1)); [C1]!; rel(d(o, n1)); [D1]!

)
.

It is straightforward to extend the semantics for guarded accepts to early returns.

13

3.8.4 Parameters

Parameters fall into two categories, in parameters are copied in at the start, while out
parameters are copied out at the end. We’ll consider a method with no choice but with
one in and one out parameter

(accept n(in b : T0,out c : T1) C accept) .

As local variables, the parameters are considered field names, which I’ll take to be o.b and
o.c.

We need the following locks. All are initially acquired.

• a(o, n) – delays the server until it is called

• b(o, n) – delays the caller until it is safe to copy the in parameters

• c(o, n) – delays the server until the in parameters have been copied

• d(o, n) – delays the client until it is time to copy the out parameters

• e(o, n)– delays the server until it the out parameters have been copied

Now the server semantics is just an elaboration on the parameter free case.

[(accept n() C accept)]! = enter(a(o, n)); rel(b(o, n)); enter(c(o, n)); [C]!; rel(d(o, n)); enter(e(o, n)) .

The client is responsible for copying the parameter data

[E0.n(E1, E2)]! =
⋃

(σ0,o)∈[E0]@,(σ1,v1)∈[E1]$,(σ2,l)∈[E2]@,v2
|σ0�σ1�σ2∧o	=�∧v1 	=�∧l	=�

start(σ0 ∪ σ1 ∪ σ2, {l, field(o, b)});
fin(∅, δ(σ0 ∪ σ1 ∪ σ2));
rel(a(o, n));
enter(b(o, n));
fin(field(o, b) �→ v1, ∅);
rel(c(o, n));
enter(d(o, n));
start(field(o, c) �→ v2, {l});
fin(l �→ v2, {field(o, c)});
rel(e(o, n))

∪

{
(σ0, o) ∈ [E0]@ , (σ1, v1) ∈ [E1]$, (σ2, l) ∈ [E2]@
| o =� ∨ v1 =� ∨ l =� · 〈chaos(σ)〉

}
.

The sequence is may seem intimidating, but is understandable in smaller pieces.

14

• Evaluate all three expressions (start and fin)

• Signal the server and wait for an acknowledgement (rel and enter)

• Copy the in parameter (start and fin)

• Signal the server and wait for the server to finish (rel and enter)

• Copy the out parameter (start and fin)

• Signal the server that the out parameter has been copied (rel)

Adding choice, guarding and early returns to the parameter case is straight forward as
the client semantics is not affected and the change in server semantics from no parameters
to parameters is simply a matter of adding enter and rel sequences for the additional locks.
Having more or fewer parameters is also conceptually straight forward.

4 Extending �

The relation
p

� can be extended to finite traces in the obvious way

x
ε
� y iff x = y

x
ps

� y iff ∃z · x
p

� z
s
� y, where s ∈ P ∗ .

Next we extend
p
� to infinite traces. Define x ↑s to mean there exists a function f : δ(s)→

Z such that

f(i)
s(i)
� f(i+ 1)

and f(0) = x. The existence of such a function means that from x, the computation s may
proceed to the end of s, if s is finite, or infinitely, if s is infinite. Now define

x
s
� y iff x ↑s , where s ∈ Pω .

I.e., an infinite computation is considered to be chaotic.

Now we define
S
� for a trace set S by

x
S
� y iff ∃s ∈ S · x

s
� y

and
C
� for a command C by

x
C
� y iff x

[C]
!

� y .

15

All these varieties of arrows can be extended to sets

X � Y iff ∀x ∈ X · ∃y ∈ Y · x� y .

Now

wp(C, Y) =

{
x ∈ Z | x

C
� y

}
.

16

