
The Static Semantics of HARPO/L [DRAFT 4a]

Theodore S Norvell

Electrical and Computer Engineering

Memorial University

December 21, 2010

Abstract

Abstract to be done.

1 Abstract Syntax

We present the abstract syntax of the language as a phrase structured (context-
free grammar).

2 Types

2.1 Typing relation

Each well-formed phrase of the language is associated with some phrase type.
A context is a mapping from identifiers to phrase types. If E is a phrase of the
abstract syntax, t is a phrase type, and Γ is a context, we write

Γ � E : t

to mean that phrase E has type t in context Γ.
For example

Γ � 1 = 2 : bool

This typing relation is specified by a set of inference rules written

assumptions

conclusion

The domain of the context is always a finite set of identifiers.
The typing relation is intended to define a partial function from contexts

and phrases to types

1

Types and objects

Objects o ::= objrw(t)
Types t, u, v ::= p | array(t) | αboundedby k | k
Prim. types p, q ::= bool | int8 | int16 | int32 | float16 | float32 | float64
Class and interface types k ::= c 〈a〉
Type variables α, β

Generic arguments a, b ::= t

Read/Write Mode rw ::= r | w
Values V

Class identifiers c, d

Context

Context Γ ::= x �→ o,Γ | x �→ m,Γ | x �→ c,Γ | x �→ (αboundedby k) ,Γ | ε
Methods m ::= [TBD]

Class environment. A class environment is a partial function from class iden-
tifiers to symbol table entries for classes and interfaces. A class or interface
symbol table entry records the declarations of the class, the set of interfaces it
extends (empty for classes) and the set of interfaces it implements (empty for
interfaces).

Class Environment Θ ::= c �→ cid,Θ | ε
Class and interface declarations cid ::= λg · clintci(∆, t, u)
Class or interface ci ::= class | interface
Generic parameter g ::= x <: t
Member Declarations ∆ ::= TBC

3 Building a class environment

We can analyse each class and interface in two passes. The first pass builds a
class environment. The second pass does type checking and inference.

In the first pass, we record information about each class and inteface in the
class environment (Θ). Since this is done before type checking, all that can be
done is to record information in a raw form. For each class declaration

(
class x implements i D

)

we add an entry
c �→ λε · clintclass(∆, ε, u)

to the class environment, where c is the fully qualified name for the class, ∆ is
derived from D, and u is derived from i. Similarly for each interface declaration

(
interface x extends i D

)

2

we add an entry
c �→ λε · clintclass(∆, t̄, ε)

to the class environment, where c is the fully qualified name for the interface,
∆ is derived from D, and t̄ is derived from i.

When there are generic parameters,

type xi <: Ei

we create new type variables αi and add constraints αi <: ti to between the λ
and the ·. Each ti is derived from each Ei by replacing identifiers representing
classes with the corresponding class identifier, replacing braces with angle brack-
ets, replacing each xi with the coorsponding αi and so on. [To do: Formalize
this.]

Deriving ∆ from the sequence of declarations D is done by a similar pro-
cess. The type expressions used in field declarations, method declarations, and
constructor arguments are turned into types t using a superficial analysis. [To
do: Formalize this.]

After the first pass is completed for the whole program, we can do full type
checking on the whole program.

4 Types of expressions

4.1 Identifiers are looked up in the context

The type of an identifier can be looked up in the context. This is the only rule
for identifiers, so an identifier not in the current context results in a type error.

E is an identifier E ∈ dom(Γ)

Γ � E : Γ(E)
(LOOKUP)

4.2 Constants

For constants of the language we have

E is an integer constant in {−128, ...,+127}

Γ � E : objr(int8)

E is an integer constant in {−215, ...,+215 − 1}

Γ � E : objr(int16)

E is an integer constant in {−231, ...,+231 − 1}

Γ � E : objr(int32)

[TBD: Similar for float]

3

4.3 Arithmetic expressions

Generally, unary expressions leave the type alone, while binary expressions re-
quire the operands to have the same type and produce the same result type.
When the operand types are different, there must be a widening conversion from
one to the other.

Subtypes are given by the following rules: [[Does this make sense?]]

int8 <: int16 int16 <: int32

float16 <: float32 float32 <: float64

Furthermore, subtyping is transitive and reflexive

t <: u u <: v

t <: v

t <: t

All primitive types are subtypes of the built-in interface primitive.

p <: primitive 〈〉

The following two rules illustrate the typing rules for the binary arithmetic
operations on integers. The rules show that either operand may be widened,
but not both.

Γ � E : obj(p) Γ � F : obj(q) p <: q p, q ∈ {int8, int16, int32} ⊕ ∈ {+,−, ∗,div,mod}

Γ � E ⊕ F : objr(q)

Γ � E : obj(p) Γ � F : obj(q) q <: p p, q ∈ {int8, int16, int32} ⊕ ∈ {+,−, ∗,div,mod}

Γ � E ⊕ F : objr(p)

[Arithmetic expressions to be completed.]

4.4 Arrays

Arrays can be indexed by integers

Γ � E : objx(array(t)) Γ � F : obj(p) p ∈ {int8, int16, int32}

Γ � E[F] : objx(t)

4.5 Inheritence

Classes can implement interfaces, while interfaces can extend other interfaces.
In the future we may allow classes to extend classes, so these rules are written
with that in mind.

Extension and implementation induce a subtype relation on classes and in-
terfaces as follows

4

• Inheritence by extension

Θ(c) = λg · clintci(∆, t, u)
∃t ∈ t · d

〈
b
〉
= t[g := a]

c 〈a〉 <: d
〈
b
〉

• Inheritence by implementation

Θ(c) = λg · clintci(∆, t, u)
∃u ∈ u · d

〈
b
〉
∈ u[g := a]

c 〈a〉 <: d
〈
b
〉

Furthermore, a type variable is a subtype of its bound

(αboundedby k) <: k

As noted earlier, subtyping is reflexive and transitive.

4.6 Fields and methods

A field can be found in an object that implements an interface or class that
declares the field. The same rule serves for method lookup. Fields and methods
may also be inherited. Rules on consistancy of inheritence (see section [[TBD]])
ensure that a field or method can only be inherited from one supertype and that
there is no conflict between the declarations of a type and any of its supertypes.

Γ � E : objrw(t)
t <: x 〈a〉

Θ(x) = λg · clintci(∆, u, v)
∆(i) = (public, om)

Γ � E.i : om[g := a]

4.7 Initialization Expressions

A new object can be created from a concrete class

Γ � E : c 〈a〉
[Matching constructor arguments is To Be Done.]

Γ � new E(F0, F1, ..., Fn−1) : objw(c 〈a〉)

A new array can be created using a for loop.

Γ � E : obj(t) t <: int 〈〉 Γi←obj
r
(q) � F : obj(t)

Γ � (for i : E do F) : objw(array(t))

It is required that E be a compile time constant, evaluable after generic spe-
cialization. This requirement is not captured formally by this rule.

5

A choice of initializations is given by an ‘if’ expression

Γ � E : obj(bool) Γ � F : obj(t) Γ � G : obj(t)

Γ � (if E then F else G) : objw(t)

Other initializations are simply expressions and are typed the same as other
expressions.

5 Type checking types

Some of the phrases in a program represent types.

5.1 Primitives

Each primitive type is typed to itself

p ∈ {bool, int8, int16, int32, float16, float32, float64}

Γ � p : p

5.2 Class and interfaces

In the abstract syntax, class names are followed by 0 or more generic arguments
in braces. (In the concrete syntax, the baces are omitted in the 0 argument
case.)

Calculating the type of a phrase x {E0, E1, ...En−1} is done in several steps

• Look up identifier x in the context. It should map to a class identifier, c.

• Look up that class identifier in the class environment. This gives a lambda
expression, which should have n generic parameters.

• Calculate the type of each phrase Ei giving a type ai.

• Check that each argument type ai matches the coresponding generic ar-
gument.

• The resulting class type is c 〈a0, a1, ..., an−1〉.

Γ(x) = c
Θ(c) = λα <: t · clintci(∆, u, v)

Γ � Ei : ai, for all i
ai <: ti[α := a], for all i

Γ � x
{
E
}
: c 〈a〉

6

5.3 Array types

Phrases representing array types include a bound. This bound must be a compile
time constant calculable after generic expansion. Our rule here does not capture
that requirement, as it can only be determined at or after specialization

Γ � E : t Γ � F : obj(u) u <: int 〈〉

Γ � E[F] : array(t)

5.4 Generic parameters

Inside a generic class or interface the parameters’ identifiers will be bound –in
the context– to generic parameters of the form

α boundedby k

6 Type checking of commands

For statements, I’ll use judgements of the form

Γ � E

where E is a command, to mean that E is well typed. We can think of this as
an abbreviation for Γ � E : comm, where comm is the type of commands.

6.1 Assignments

Assignments are permitted only for primitive variables. Thus the rule is

Γ � E : objw(t) Γ � F : obj(u) u <: t t <: primitive 〈〉

Γ � E := F

6.2 Local variable declaration

Local variables may be of any object type

Γ � E : t Γ � F : obj(u) u <: t Γi←obj
w
(t) � S

Γ � obj i : E := F S

For local variables, the type, if omitted, is inferred from the type of the
expression.

Γ � F : obj(t) Γi←obj
w
(t) � S

Γ � obj i := F S

6.3 Blocks

A block is a sequence of 0 or more statements.

Γ � Si, for all i ∈ {0, 1, ..., n− 1}

Γ � S0 S1 ... Sn−1

7

6.4 Method calls

TBD

6.5 Sequential control flow

Γ � E : obj(bool) Γ � S Γ � T

Γ � (if E then S else T)

Γ � E : obj(bool) Γ � S

Γ � (wh E do S)

Γ � E : obj(t) t <: int 〈〉 Γi←obj
r
(t) � S

Γ � (for i : E do S)

6.6 Parallelism

Γ � Si, for all i ∈ {0, 1, ..., n− 1}

Γ � (co S0 || S1 || ... || Sn−1)

Γ � E : obj(t) t <: int 〈〉 Γi←obj
r
(t) � S

Γ � (co i : E do S)

6.7 Method Implementation

TBD

6.8 Atomicity

Γ � S

Γ � (atomic S)

7 Type Checking Declarations

7.1 Class declarations

7.2 Interface declarations

7.3 Global object and field declarations

7.4 Method declarations

8

