On Partially Overlapping Coexistence for Dynamic Spectrum Access in Cognitive Radio

Ebrahim Bedeer, Mohamed Marey, Octavia Dobre, and Kareem Baddour‡

Memorial University of Newfoundland, St. John’s, NL, Canada
‡Communications Research Centre, Ottawa, ON, Canada

{e.bedeer, mmarey, odobre}@mun.ca, kareem.baddour@crc.ca

June 10, 2011
Outline

1. Introduction
2. Aim of the work
3. System Models
4. Simulation Results
5. Conclusion
Problem
Increasing demand of bandwidth to support new services with limited spectrum resources.

Solution
Cognitive Radio (CR) technology.

Approach 1
Cognitive Users (CUs) access Primary Users (PUs) spectrum holes (temporally or spatially).

Approach 2
Spectral sculpting of CUs to allow partial frequency overlap (coexistence) with PUs.
Attractive modulation candidate for CUs: OFDM due to its flexibility and adaptivity.

Partially overlapping coexistence concept.
Aim of the work

- Study the coexistence of CUs (OFDM) and PUs (NB and OFDM, respectively).
- Find the minimum frequency separation between coexisting systems to meet a target BER.
- Investigate techniques (windowing, nulling subcarriers) to increase minimum frequency separation.
- Explore the effect of windowing and nulling subcarriers on the OFDM CU PAPR and spectral efficiency.
OFDM (CU & PU)

$$s_{\text{OFDM}}(t) = \frac{1}{\sqrt{T_o}} \sum_{n=-\infty}^{\infty} \sum_{k \in \Omega} a^n_k e^{i2\pi f_k(t-nT_o)} w(t - nT_o)$$

NB PU

$$s_{\text{NB}}(t) = \sum_{k=-\infty}^{\infty} b_k p(t - kT - \xi) e^{i2\pi f_c t}$$
Simulation Setup

OFDM
- $BW_{OFDM} = 1.25$ MHz
- $N = 128$
- $\Delta F = 9.7656$ kHz
- $T_u = 102.4$ μsec
- $T_{cp} = 25.6$ μsec
- Modulation: QPSK
- Channel: AWGN - frequency selective channel

NB
- $BW_{NB} = 15$ kHz
- Roll-off factor, $\alpha = 0.35$
- Modulation: QPSK
- Channel: AWGN - frequency flat channel

\[
F_n = \frac{f_c - 0.5 \cdot BW_{OFDM}}{\Delta F}
\]
First Coexistence Scenario

- OFDM - NB case.
AWGN channel

NB PU BER as a function of F_n in AWGN channel at $\frac{E_b}{N_o} = 10 \, dB$.
OFDM CU BER as a function of F_n in AWGN channel at $\frac{E_b}{N_0} = 10 \, dB$.
Fading channel

NB PU BER as a function of SIR in fading channel at $\frac{E_b}{N_0} = 35\, dB$.
Second Coexistence Scenario

- OFDM - OFDM case.
AWGN channel

OFDM PU BER as a function of F_n in AWGN channel at $\frac{E_b}{N_0} = 10$ dB.
OFDM PU BER as a function of OFDM CU number of subcarriers in AWGN channel at SIR = 0 dB and $\frac{E_b}{N_0} = 10$ dB.
Windowing

NB PU BER as a function of the raised cosine window roll-off factor β in AWGN channel at SIR = 0 dB and $\frac{E_b}{N_0} = 10 \, dB$.

15 / 20
Nulling

NB PU BER as a function of the OFDM CU number of nulled subcarriers in AWGN channel at SIR = 0 dB and $\frac{E_b}{N_0} = 10 \text{ dB}$.
Effect of windowing and nulling on OFDM CU PAPR

OFDM CU PAPR for $\beta = 0.15$ and 3 nulled subcarriers, respectively.
Effect of windowing and nulling on spectral efficiency

\[\zeta = \frac{mN_u/(T_s(1 + \beta))}{N\Delta F} \]

Windowing

\[
\begin{align*}
\beta &= 0.15 \\
N_u &= 128
\end{align*}
\] \[\Rightarrow \zeta = 2.7826 \text{ (bits/sec)/Hz} \]

Nulling

\[
\begin{align*}
\beta &= 0 \\
N_u &= 125
\end{align*}
\] \[\Rightarrow \zeta = 3.125 \text{ (bits/sec)/Hz} \]
Coexistence between OFDM CU, and NB PU and OFDM PU systems is considered.

Minimum frequency separation to meet a target BER is found to be a function of SIR and channel conditions.

Minimum frequency separation can be improved by windowing or nulling subcarriers; however, this reduces spectral efficiency.

Balancing trade-offs between spectral efficiency and minimum frequency separation for the coexistence scenarios.
Questions?