THERMAL SPREADING RESISTANCES IN RECTANGULAR FLUX CHANNELS
PART I - GEOMETRIC EQUIVALENCES

Y.S. Muzychka

Faculty of Engineering and Applied Science
Memorial University of Newfoundland
St. John’s, NF, Canada, A1B 3X5

M.M. Yovanovich† and J.R. Culham∗

Microelectronics Heat Transfer Laboratory
Department of Mechanical Engineering
University of Waterloo
Waterloo, ON, Canada, N2L 3G1

ABSTRACT

This paper presents a simple geometric transformation for predicting thermal spreading resistance in isotropic and compound rectangular flux channels using the solution for an isotropic or compound circular flux tube. It is shown that the results are valid for a wide range of channel aspect ratios and source to base coverage ratio. Since the circular disk solution requires a single series summation, it is preferable to the rectangular flux channel solution which requires the evaluation of two single series and one double series summation.

Keywords: Conduction, Spreading Resistance, Heat Spreaders, Contact Heat Transfer, Electronic Packaging

NOMENCLATURE

\[ a, b = \text{radial dimensions, } m \]
\[ a, b, c, d = \text{linear dimensions, } m \]
\[ A_b = \text{baseplate area, } m^2 \]
\[ A_s = \text{heat source area, } m^2 \]
\[ A_n, B_n = \text{Fourier coefficients} \]
\[ Bi = \text{Biot number, } ht/k \]
\[ h = \text{contact conductance or film coefficient, } W/m^2 \cdot K \]

\[ J_0(\cdot), J_1(\cdot) = \text{Bessel functions of first kind, orders 0 and 1} \]
\[ k = \text{thermal conductivity, } W/m \cdot K \]
\[ \mathcal{L} = \text{length scale, } \equiv \sqrt{A_s}, m \]
\[ m, n = \text{indices for summations} \]
\[ Q = \text{heat flow rate, } \equiv q_s A_s, W \]
\[ q_s = \text{heat flux, } W/m^2 \]
\[ R = \text{thermal resistance, } K/W \]
\[ R_{1D} = \text{one-dimensional resistance, } K/W \]
\[ R_s = \text{spreading resistance, } K/W \]
\[ R_t = \text{total resistance, } K/W \]
\[ R^\ast = \text{dimensionless resistance, } \equiv kRL \]
\[ t, t_1, t_2 = \text{total and layer thicknesses, } m \]
\[ T = \text{temperature, } K \]
\[ T_s = \text{mean source temperature, } K \]
\[ T_f = \text{sink temperature, } K \]

Greek Symbols

\[ \alpha = \text{equation parameter, } \equiv (1 - \kappa)/(1 + \kappa) \]
\[ \beta_m = \text{eigenvalues, } \equiv \sqrt{\delta_m^2 + \lambda_n^2} \]
\[ \delta_m = \text{eigenvalues, } (m\pi/c) \]
\[ \epsilon = \text{relative source size, } \equiv a/b \]
\[ \epsilon_x = \text{relative source size, } \equiv a/c \]
\[ \epsilon_y = \text{relative source size, } \equiv b/d \]
\[ \epsilon_b = \text{baseplate aspect ratio, } \equiv c/d \]
\[ \theta = \text{temperature excess, } \equiv T - T_f, K \]
\[ \bar{\theta} = \text{mean temperature excess, } \equiv \bar{T} - T_f, K \]
\[ \kappa = \text{relative conductivity, } k_2/k_1 \]
\[ \lambda_n = \text{eigenvalues, } (n\pi/d) \]
\[ \phi, \varphi = \text{spreading resistance functions} \]
\[ \psi = \text{dimensionless spreading parameter, } 4kaR_s \]
\[ \varrho = \text{equation parameter, } \equiv (\zeta + h/k_2)/(\zeta - h/k_2) \]
\[ \tau = \text{relative thickness, } \equiv t/L \]
\[ \zeta = \text{dummy variable, } m^{-1} \]
\[ \xi = \text{sub-variable, Eq. (26)} \]

**Subscripts**
- \( b \): base
- \( e \): equivalent
- \( f \): fluid
- \( m, n \): \( m^{th} \) and \( n^{th} \) terms
- \( s \): source
- \( t \): total
- \( x \): x-dir
- \( y \): y-dir

**INTRODUCTION**

Thermal spreading resistance in rectangular flux channels is of interest to electronic packaging engineers working with discrete heat sources in heat sink, circuit board and a host of other applications where heat enters through a portion of the contacting surface.\(^1,2\)

In the first part of this paper, geometric equivalences between the circular disk and rectangular flux channel are established. A review of the literature shows that a number of useful solutions for rectangular flux channels have been obtained for a variety of configurations.\(^3-7\) However, these solutions which are based on Fourier series expansions,\(^8,9\) require the evaluation of single and double summations. Although these solutions are not computationally intractable in the present day, a solution requiring the evaluation of a single series is much more efficient. Such is the case for thermal spreading resistances in circular flux tubes.\(^10,11\) This paper will demonstrate that a simple geometric equivalence may be used for predicting thermal spreading resistances in rectangular flux channels using the solution for an equivalent circular flux tube. It will be shown that the solution is a weak function of shape and aspect ratio of the heat source and substrate. Theoretical results will be presented for a range of parameters and simple expressions will be developed to assist in the computations.

**PROBLEM STATEMENT**

Thermal spreading resistance arises in multi-dimensional applications where heat enters a domain through a finite area, (refer to Figs 1 and 3). In typical applications, the system is idealized as having a central heat source placed on one of the heat spreader surfaces, while the lower surface is cooled with a constant conductance which may represent a heat sink, contact conductance, or convective heat transfer. All edges are assumed to be adiabatic as well as the region outside the heat source in the source plane.

In this idealized system, the total thermal resistance of the system is defined as

\[ R_t = \frac{T_s - T_f}{Q} = \bar{\theta}_s \]

where \( \bar{\theta}_s \) is the mean source temperature excess and \( Q \) is the total heat input of the device. The mean source temperature is given by

\[ \bar{\theta}_s = \frac{1}{A_s} \int \int_{A_s} \theta(x,y,0) \, dA_s \]

In applications involving adiabatic edges, the total thermal resistance is composed of two terms: a uniform flow or one-dimensional resistance and a spreading or multi-dimensional resistance, which vanishes as the source area approaches the substrate area, i.e. \( A_s \to A_b \). These two components are combined as follows:

\[ R_t = R_{1D} + R_s \]

Thermal spreading resistance analysis of a rectangular spreader requires the solution of Laplace’s equation

\[ \nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0 \]

in three dimensions, and for circular disk spreaders

\[ \nabla^2 T = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} = 0 \]

in two dimensions.

In most applications the following boundary conditions are applied:

\[ \frac{\partial T}{\partial n} \bigg|_{x=0,y=0,r=0} = 0, \quad n = x, y, r \]

\[ \frac{\partial T}{\partial n} \bigg|_{x=c,y=d,r=b} = 0, \quad n = x, y, r \]

along the edges, \( x = c, y = d \) or \( r = b \), and at the centroid of the substrate, \( x = 0, y = 0 \) or \( r = 0 \). Over the top surface \( z = 0 \),

\[ \frac{\partial T}{\partial z} \bigg|_{z=0} = 0, \quad A_s < A < A_b \]

\[ \frac{\partial T}{\partial z} \bigg|_{z=0} = -\frac{q_s}{k}, \quad 0 < A < A_s \]

where \( A_s \) is the area of the heat source and \( A_b \) is the area of the base or substrate. Finally, along the lower surface \( z = t \),

\[ \frac{\partial T}{\partial z} \bigg|_{z=t} + \frac{h}{k} (T(x,y,t) - T_f) = 0 \]

where \( h \) is a uniform convection heat transfer coefficient or contact conductance.
In compound systems, (refer to Figs. 2 and 4), Laplace’s equation must be written for each layer in the system, and continuity of temperature and heat flux at the interface is required, yielding two additional boundary conditions:

\[
T_1(x, y, t_1) = T_2(x, y, t_1)
\]

\[
k_1 \frac{\partial T_1}{\partial z} \bigg|_{z=t_1} = k_2 \frac{\partial T_2}{\partial z} \bigg|_{z=t_1}
\]

For a compound system Eq. (8) is written to represent \(T_2\), i.e.,

\[
\frac{\partial T_2}{\partial z} + \frac{h}{k}(T_2 - T_f) = 0
\]

Due to the nature of the solution, the total thermal resistance may be analyzed as two problems. One is steady one-dimensional conduction which yields the uniform flow component of the thermal resistance, while the other is a multi-dimensional conduction analysis using Fourier series or finite integral transform methods to solve an eigenvalue problem. This paper is mainly concerned with modeling the solution to the thermal spreading resistance component in systems with one or two layers. The necessary solutions for the systems to be examined are found in the papers by Yovanovich et al.\(^3\) They are given below for the sake of completeness since they will be nondimensionalized in a more appropriate manner.

**Cylindrical Systems**

Thermal spreading resistance solutions in isotropic and compound disks, (refer to Figs. 1 and 2), flux channels and half spaces are presented in Yovanovich et al.\(^3\)\(^,\)\(^10\) A general solution for the compound disk was first obtained by Yovanovich et al.\(^11\) The general solution\(^11\) is

\[
4k_1aR_n = \frac{8}{\pi \epsilon} \sum_{n=1}^{\infty} A_n(n, \epsilon)B_n(n, \tau, \tau_1) \frac{J_1(\delta_n \epsilon)}{\delta_n \epsilon} \tag{11}
\]

where

\[
A_n = -\frac{2\epsilon J_1(\delta_n \epsilon)}{\delta_n^2 J_0(\delta_n)} \tag{12}
\]

and

\[
B_n = \frac{\phi_n \tanh(\delta_n \tau) - \varphi_n}{1 - \phi_n} \tag{13}
\]

The functions \(\phi_n\) and \(\varphi_n\) are defined as follows:

\[
\phi_n = \frac{\kappa - 1}{\kappa} \cosh(\delta_n \tau_1) [\cosh(\delta_n \tau_1) - \varphi_n \sinh(\delta_n \tau_1)] \tag{14}
\]

and

\[
\varphi_n = \frac{\delta_n + Bi \tanh(\delta_n \tau)}{\delta_n \tanh(\delta_n \tau) + Bi} \tag{15}
\]

The eigenvalues \(\delta_n\) are roots of \(J_1(\delta_n) = 0\) and \(Bi = hh/k_2, \tau = t/b, \) and \(\tau_1 = t_1/b.\)

**Rectangular Systems**

Thermal spreading resistance in rectangular systems was recently obtained by the authors.\(^3\) In Yovanovich et al.\(^3\), the authors obtained a solution for a compound rectangular flux tube having a central heat source, (refer to Fig. 3). This general solution also simplifies for many cases of semi-infinite flux channels and half space solutions.\(^3\) More recently, the authors\(^4\) developed a solution for a single eccentric heat source on compound and isotropic flux channels. The results of Muzychka et al.\(^4\) were also extended to systems having multiple arbitrarily located heat sources.
The spreading resistance of Yovanovich et al. is obtained from the following general expression according to the notation in Figs. 3 and 4:

\[
R_s = \frac{c^2}{2k_1 a^2 d} \sum_{m=1}^{\infty} \frac{\sin^2 (m \pi a/c)}{(m \pi)^3} \cdot \varphi(\delta_m) \\
+ \frac{d^2}{2k_1 b^2 c} \sum_{n=1}^{\infty} \frac{\sin^2 (n \pi b/d)}{(n \pi)^3} \cdot \varphi(\lambda_n) \\
+ \frac{c d}{k_1 a^2 b^2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin^2 (m \pi a/c) \sin^2 (n \pi b/d)}{(m \pi)^2 (n \pi)^2} \cdot \varphi(\beta_{mn})
\]

where

\[
\varphi(\zeta) = \left( \frac{ae^{4\zeta_{t_1}} + e^{2\zeta_{t_1}}}{ae^{4\zeta_{t_1}} - e^{2\zeta_{t_1}}} + \vartheta \left( e^{2\zeta(2t_1+t_2)} + ae^{2\zeta(2t_1+t_2)} \right) \right) \\
\left( ae^{4\zeta_{t_1}} - e^{2\zeta_{t_1}} + \vartheta \left( e^{2\zeta(2t_1+t_2)} - ae^{2\zeta(2t_1+t_2)} \right) \right)
\]

and

\[
\vartheta = \frac{\zeta t + ht/k_1}{\zeta t - ht/k_2} \quad \text{and} \quad \alpha = \frac{1 - \kappa}{1 + \kappa}
\]

with \( \kappa = k_2/k_1 \). The eigenvalues for these solutions are: \( \delta_m = m \pi a/c, \lambda_n = n \pi b/d \) and \( \beta_{mn} = \sqrt{\delta_m^2 + \lambda_n^2} \) and are denoted by \( \zeta \) in Eq. (17). Equation (17) simplifies for an isotropic disk to give

\[
\varphi_n = \frac{\zeta t + ht/k_1 \tanh(\zeta t)}{\zeta t \tanh(\zeta t) + ht/k_1}
\]

where \( k_1 \) is now the thermal conductivity of the flux channel.

In the next section these two solutions are compared, and it is shown that considerable computational effort is saved by modeling the rectangular flux channel as an equivalent circular flux tube for a wide range of channel aspect ratios.

![Fig. 3 - Compound Flux Channel with Rectangular Heat Source](image)

![Fig. 4 - Isotropic Flux Channel with Rectangular Heat Source](image)

**ANALYSIS**

Given the two solutions for the circular disk and rectangular flux channel, it is now possible to show that there exists a geometric equivalence between the two systems as shown in Fig. 5. Geometric equivalence was established by Muzychka et. al. for computing the spreading resistance in annular sectors. In determining this equivalence, we choose to maintain the volume of material in the system. In doing so, the following conditions must be satisfied:
interchange $x$- and $y$-values, it gives the same value for the spreading resistance. The spreading functions $\phi$ which account for the effects of the conductance $h$ and finite thickness $t$ are:

$$\phi(\xi) = \frac{\xi \tau + Bi \tanh(\xi \tau)}{Bi + \xi \tau \tanh(\xi \tau)}$$  \hspace{1cm} (26)

where

$$\phi_x = \phi(\xi \to 2\pi m \sqrt{\epsilon_x \epsilon_y h_b} / \epsilon_b)$$

$$\phi_y = \phi(\xi \to 2\pi n \sqrt{\epsilon_x \epsilon_y h_b})$$

$$\phi_{xy} = \phi(\xi \to 2\pi \sqrt{m^2 \epsilon_b^2 + n^2 \epsilon_x \epsilon_y h_b})$$  \hspace{1cm} (27)

The one dimensional dimensionless resistance may be written in dimensionless form as:

$$R^*_1 = \left(1 + \frac{1}{Bi}\right) \tau \epsilon_x \epsilon_y$$  \hspace{1cm} (28)

where $\epsilon_x = a/c$, $\epsilon_y = b/d$, $\epsilon_b = c/d$, $\tau = t/\sqrt{A_s}$, and $Bi = ht/k$.

Equation (25) simplifies for the special case when $\epsilon_b = 1$, i.e. a square flux channel. Similiar results may be obtained for compound disks and flux channels. The comparisons in the next section will be made for isotropic systems, but the analysis is also valid for compound systems.

**RESULTS AND DISCUSSION**

We may now compare the solution for the disk and the flux channel using Eqs. (21-22) and (25-27). Two configurations are examined. These are the square flux channel with a central square heat source, and a rectangular flux channel with a rectangular heat source which may or may not conform to the aspect ratio of the flux channel as shown in Fig. 6. In the case of the flux tube solution 200 terms were used in the summation in Eq. (21). In the case of the flux channel, 200 terms were used in each of the single summations and 50 terms in the double summation of Eq. (25). This provided accuracy to at least four decimal places.

First, for the special case of a square flux channel with a square heat source, the solution simplifies considerably, since $\epsilon_b = 1$, and $\epsilon_x = \epsilon_y = \epsilon$. The solutions for both the circular disk and square flux channel are given in Figs. 7-11 for a range of dimensionless thickness $\tau$, $Bi$, and $\epsilon$. Excellent agreement is obtained for these two cases, as can be seen in Figs. 7-11. It is clear that preserving the volume of the material, by
transforming the square flux channel into a circular flux tube, gives equivalent results for the dimensionless spreading resistance at the same coverage ratio $\epsilon = \sqrt{A_s/A_b}$.

Fig. 6 - Non-conforming Source/Substrate System

Next we examine the effect of flux channel and heat source aspect ratios. Three flux channel aspect ratios are examined: $\epsilon_x = c/d = 1, 2, 4$. Equivalent results are obtained if $\epsilon_y = c/d = 1, 1/2, 1/4$. For each of these cases, the source aspect ratio is varied such that $\epsilon_x = 0.2, 0.4, 0.6, 0.8$ and $\epsilon_y = 0.2, 0.4, 0.6, 0.8$. This leads to sixteen combinations for each flux channel considered. Furthermore, we have also considered three dimensionless thicknesses: $\tau = 0.01, 0.1, 1$ and two Biot numbers: $Bi = 10, 100$. In order to compare the circular flux tube and the rectangular flux channel, the results must be plotted using the common aspect ratio defined as:

$$\epsilon = \sqrt{A_s/A_b} = \sqrt{\epsilon_x \epsilon_y} \quad (30)$$

Thus for each case examined an equivalent circular aspect ratio is determined from $\epsilon_x$ and $\epsilon_y$. This leads to nine unique predictions using the flux tube solution. Therefore, for some aspect ratios two solutions are determined for the flux channel due to source orientation, while there is only one equivalent flux tube solution. The results of this comparison are presented in Figs. 12-17. It is clear that for most combinations with $\tau < 1$, there exists an equivalence between the two systems for which the error is less than $\pm 10$ percent. The accuracy increases as $Bi$ increases and as $\tau$ decreases for all values of $\epsilon$ considered.

The error in the total resistance will be much less once the one dimensional resistance is combined with the spreading resistance. Thus the present approach allows for a simple and convenient method for computing the thermal resistance in rectangular flux channels using the circular flux tube solution.

**SUMMARY AND CONCLUSIONS**

This paper examined the exact solutions of the circular flux tube and rectangular flux channel for both isotropic and compound systems. It was shown that the solution for the circular flux tube may be used to model the rectangular flux channel when an appropriate geometric equivalence is established. Graphical results were presented for a wide range of parameters. It was shown that the equivalence is accurate for moderately sized contacts of any aspect ratio. These results will be utilized in Part II to facilitate an equivalence in similar systems with edge cooling.

**ACKNOWLEDGMENTS**

The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

**REFERENCES**


Fig. 7 - Equivalence for a Square Channel for $\tau = 0.001$.

Fig. 8 - Equivalence for a Square Channel for $\tau = 0.01$.

Fig. 9 - Equivalence for a Square Channel for $\tau = 0.1$.

Fig. 10 - Equivalence for a Square Channel for $\tau = 1$. 
Fig. 11 - Equivalence for a Square Channel for $\tau = 10$.

Fig. 12 - Equivalence Model for $Bi = 10$ and $\epsilon_b = 1$.

Fig. 13 - Equivalence Model for $Bi = 10$ and $\epsilon_b = 2$.

Fig. 14 - Equivalence Model for $Bi = 10$ and $\epsilon_b = 4$. 
Fig. 15 - Equivalence Model for $Bi = 100$ and $\epsilon_b = 1$.

Fig. 16 - Equivalence Model for $Bi = 100$ and $\epsilon_b = 2$.

Fig. 17 - Equivalence Model for $Bi = 100$ and $\epsilon_b = 4$. 