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Abstract 

In this paper, we examine the digital hardware 
design and implementation of a novel compact block 
cipher, referred to as PUFFIN, that is suitable for 
embedded applications. An implementation of PUFFIN 
targeted to ASIC technology is considered. The 
proposed block cipher is designed to have a 64-bit 
block size, a 128-bit key, and is capable of both 
encryption and decryption operations. The cipher 
structure is based on the following features: a simple 
encryption process composed of permutations and 
substitutions based on 4×4 S-boxes, an identical 
datapath for both encryption and decryption facilitated 
by involutional operations, and a straightforward 
on-the-fly subkey generation composed of only a 
permutation and bit inversions. PUFFIN is found to 
perform well for implementations based on 
0.18-micron CMOS technology. In comparison to other 
lightweight ciphers, PUFFIN has preferred features, 
low hardware complexity, and good throughput. 

 
1. Introduction 
 

In this paper, we propose a novel block cipher, called 
PUFFIN, based on a substitution-permutation network 
(SPN) structure [1]. It is designed for applications 
requiring low circuit area and is suitable for ASIC and 
FPGA implementations. The new cipher features a 
simplicity of design and, as an involutional block 
cipher, is easily implemented to be capable of both 
encryption and decryption functionality with a data 
block size of 64 bits and a key size of 128 bits. To 
achieve this we have utilized low complexity 4×4 
S-boxes, instead of the expensive 8×8 S-boxes (which 
are found, for example, in the Advanced Encryption 
Standard (AES) [2]), as our nonlinear substitution 
components and they can be easily implemented in 
hardware with simple combinational logic of 4-bit 
Boolean functions. In addition, the encryption or 
decryption process may share the same hardware due to 
the involutional nature of the components in the cipher. 
We have also applied a very simple key schedule with 

only a permutation and bit inversions so that the 
subkeys can be derived on-the-fly and, hence, there is 
no need to store all the subkeys. This simple key 
schedule also ensures that the secret key can change in 
a clock cycle and, hence, the cipher is highly key-agile.  

All these characteristics make the new cipher very 
efficient for hardware implementations which are 
targeted to low cost embedded applications. The cipher 
is also resistant to the two important classes of 
cryptanalysis: differential and linear cryptanalysis. 
Further, it also provides resistance to related-key 
attacks and does not have any weak keys in the total 
keyspace.  

 
2. Background 
 

In recent years, several papers have examined the 
digital hardware implementation of lightweight block 
ciphers targeted to embedded applications like 
smartcards and RFID tags [3]. For example, it is well 
known that the 8×8 S-box of AES is the greatest 
consumer of circuit area in a CMOS design and, as a 
result, in [4], a compact ASIC implementation of AES 
is presented, which achieves low hardware complexity 
through the re-use of a single component S-box circuit. 
This implementation requires only 3400 gates but is 
slow. 

ICEBERG [5] is a proposal, with a 64 bit block size 
and an 128 bit key, that is intended for efficient, high 
speed applications targeted to reconfigurable hardware, 
but that is also suitable for compact applications. It is 
based on the SPN structure and uses S-boxes and 
permutations that are involutions. Although it supports 
both encryption and decryption operations, it does not 
appear to be as compact as other proposed ciphers.  

DESL [6] is a lightweight variant of the Data 
Encryption Standard (DES) which makes use of only 
one S-box mapping and can therefore be made to more 
compact that DES (which uses 8 S-box mappings). 
DESXL is a strengthened DESL variant with a key size 
of 184 bits (although the effective key size is about 118 
bits [3]).  

Similar to our new compact block cipher PUFFIN, a 



lightweight block cipher PRESENT [7] is a recently 
proposed SPN. PRESENT is a 64-bit block cipher with 
a key length of 80 or 128 and consists of 31 rounds. The 
substitution layer applies sixteen 4×4 S-boxes, but 
neither the S-box nor the 64-bit permutation is 
involutional, and unlike PUFFIN, PRESENT is 
designed and implemented to support encryption only. 
Hence, while achieving a very compact implementation 
of less than 2000 gates,  PRESENT is not capable of 
supporting modes (eg. cipher block chaining) that 
require decryption. As well, the most compact 
implementation of PRESENT has only an 80 bit key 
size and is therefore only suitable to environments that 
can accept limited security. 

Other proposed compact block ciphers such as 
mCrypton [8] and Hight [9] will be included in the 
discussion of results in Section 5.2. 

The block cipher proposed in this paper is very 
compact, at least comparable in area complexity to 
other proposals for embedded block ciphers and, 
contrary to many other cipher implementations, is 
capable of encryption and decryption. In addition, 
PUFFIN has a large key size of 128 bits and, therefore, 
is suitable for a range of embedded applications, 
including those requiring a high level of security and 
those which make use of modes requiring decryption. 
 
3. Specifications of PUFFIN 
 

The new block cipher PUFFIN proposed in this 
paper applies a simple involutional SPN structure with 
a data block size of 64 bits and the key size is specified 
to be 128 bits. Although for some applications, a larger 
block size offers better security, for embedded 
applications, compact block ciphers are often proposed 
with a block size of 64 bits (eg. ICEBERG, DESXL, 
PRESENT). For the key size, generally 80 bits is 
considered a minimal requirement for low-security 
embedded applications. However, in practice a 128-bit 
key is able to provide adequate security for any 
application. (For example, AES has no specification for 
key sizes less than 128 bits.) Hence, for our cipher, we 
have assumed that a 128-bit key size is desired. 

Generally, SPN ciphers require different datapaths 
for encryption and decryption because the inverse 
operations used in the decryption round are usually 
different from those forward operations applied in the 
encryption round. The advantage of our cipher is that 
all the components are involutional which means the 
inverse operations used in the decryption process can 
be the same as those in the encryption process. Hence, 
the involutional SPN structure allows a very efficient 
implementation to use identical hardware for both 
encryption and decryption. Other involutional ciphers 
have been previously proposed in other contexts 
[10][11], including, of course, ICEBERG [5]. 

3.1. Basic Components 
 

In each round function of PUFFIN, three stages of 
operations are applied. The first stage is the nonlinear 
substitution layer, γ, which is composed of sixteen 
identical 4×4 S-boxes. Often, 8×8 S-boxes are used in 
block ciphers in consideration of their better nonlinear 
and differential properties. In our proposed new block 
cipher PUFFIN, we apply 4×4 S-boxes which are much 
more compact and have a lower critical path delay from 
input to output. Due to the use of more simple S-boxes, 
we need to increase the number of rounds required to 
produce the ciphertext in order to guarantee the security 
of the cipher against cryptographic attacks such as 
linear and differential cryptanalysis. The 4×4 S-boxes 
used in our cipher are the same as the S0 mapping 
applied in ICEBERG [5] and the S-box mapping is 
shown in Table 1. From this table, we can see that the 
S-box is involutional.  

 
Table 1. S-box Mapping (in Hexadecimal) [5] 

 
input 0 1 2 3 4 5 6 7 

output D 7 3 2 9 A C 1 
input 8 9 A B C D E F 

output F 4 5 E 6 0 B 8 
 

  In ICEBERG, 8×8 S-boxes are constructed from 
three layers of 4×4 S-boxes combined with two layers 
of eight 8-bit permutations. PUFFIN with just one layer 
of sixteen 4×4 S-boxes, not surprisingly, results in a 
more compact architecture than ICEBERG.  

The second stage of the new block cipher’s round is 
the key addition layer, σ, which is composed of the 
bitwise XOR between the 64-bit data block and the 
64-bit subkey. The subkey used in each round of the 
encryption/decryption process can be derived from the 
secret key of the cipher by the key schedule.  

The third stage of the round is the permutation layer, 
P64, which performs the transposition of the 64-bit data 
block in PUFFIN. The permutation can be 
implemented in wire crossings which do not cost any 
hardware gates. The permutation table for P64 is listed 
in Table A1 of the Appendix. It can be seen that 
permutation P64 in an involution and satisfies the 
property that no two outputs of a 4×4 S-box are 
connected to the same S-box in the next round.  

An important requirement for an SPN (or, indeed, 
any block cipher) is the property of completeness [12]. 
Completeness is achieved in a cipher if all the 
ciphertext bits are dependent on all the plaintext bits. 
For PUFFIN, it can be shown that the completeness 
property is satisfied after five rounds when applying the 
S-boxes and permutations we have chosen. For the 
whole encryption process of our new cipher, 32 rounds 



are adequate to provide the necessary security of the 
cipher. This will be justified in Section 4. 

 
3.2. Encryption and Decryption Process 
 

Each round function of the encryption or decryption 
process is composed of three stages: substitution γ, key 
addition σ, and permutation P64. In our new cipher, 32 
rounds are needed to securely produce the ciphertext. 
For the encryption, the 64-bit plaintext is first added 
with the secret key and then permuted using P64. 
Following is 32 identical round functions with the three 
stages of substitution, round key addition, and 
permutation. Figure 1 shows the diagram of the 
encryption process.  
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Figure 1. Block Diagram of the Encryption Process 
 
The encryption process for PUFFIN can be 

represented as follows: 
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In the above expressions of the encryption process, the 
notation, "○", means the concatenation of the basic 
operation in one stage such as substitution γ and key 
addition σKr. The notation "O" is used to represent the 
concatenation of 32 rounds of operation of (γ ○σKr 
○P64). There are 33 cipher subkeys, K0 to K32. 

Our compact new cipher is an involutional cipher so 
that the decryption process is identical to the encryption 

process after an additional permutation is performed on 
the subkeys used in the decryption process. However, 
the subkeys in the decryption process still should be 
used in a reverse order.  

Consider the following relationship:  
6464 )(64 PP
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The decryption process of PUFFIN can be obtained as 
follows:  
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Hence, we can obtain: 
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As the representation shows above, the decryption 
process can be performed in the same way as 
encryption except that the subkeys should be used in a 
reverse order and a corresponding permutation P64 is 
applied to them before they are used for the key 
addition stage in decryption.  
 
3.3. Key Schedule 
 

The key schedule portion of the cipher is responsible 
for generating the 33 subkeys from the 128-bit cipher 
key. We have designed a very simple key schedule to be 
applied in our new compact block cipher PUFFIN. The 
key schedule is designed to provide resistance to key 
schedule cryptanalysis. All the subkeys are generated 
on-the-fly in both the encryption and decryption 
process. Therefore, it is not necessary to store all the 
subkeys. For the purpose of compactness, our simple 
key round function only performs a permutation and 
selected bit inversions without any nonlinear 
substitution operation. The permutations are 
implemented as wirings which do not require any 
hardware gates and the bit inversions also cost very 
limited hardware.  

The key schedule operates on 128 bits, initialized by 
the cipher key using permutation and selected bit 
inversions. The 128-bit permutation, used in the key 
schedule and listed in Table A2 of the Appendix A, 
performs a specially selected transposition of the 128 
bits of the input key bits, and after this permutation, the 
selected four bits in position 1, 2, 3, and 5 will be 
inverted. As a result, four different positions of the bits 
in the original cipher key are inverted after each key 
round operation. The design goal of this combination of 
permutation and inversion is to allow the key schedule 
to be free of the weak keys which would cause security 
problems in the cipher [13].  

In addition, in order to be resistant to the related-key 
attack [14], the selected four bit inversions are not 
processed in each key round function so that 



non-regularity can be provided between the generation 
algorithms of the subkeys. In our key schedule, the 
second, fifth, sixth and eighth key rounds will not 
perform the inversions, while the remaining 28 rounds 
will. We will discuss the security analysis of the key 
schedule in more detail in Section 4.  

The 128-bit permutation applied in the key schedule 
is not designed to be involutional. Therefore, the 
hardware of the key schedule used in the encryption 
and decryption can not be the same. The corresponding 
inverse 128-bit permutation is used in the subkey 
generation for decryption. In the key round function of 
decryption, the corresponding selected four bits in 
position 30, 62, 71 and 120 will be inverted after the 
128-bit permutation. 

For the encryption or decryption of PUFFIN, the 
subkeys require only 64 bits and, hence, an additional 
key selection is needed in the key schedule to choose 64 
bits out of the 128 key bits generated in the key 
schedule. To achieve the goal of a very efficient 
hardware implementation of a compact cipher, we 
prefer to apply a simple key selection function without 
costing any hardware resource. Another design 
criterion related to security is that the fewest number of 
rounds should be required to have every bit of the 
128-bit key chosen at least once for a subkey.  

We have tried many simple ways to perform the key 
selection and have calculated the percentage of the bits 
being used in PUFFIN encryption or decryption among 
the whole 128 key bits after each round. Table 2 shows 
the number of the key bits being used after each round 
function until all the 128 key bits have been applied in 
the encryption or decryption at least once based on 
different key selection operations. For example, if we 
choose the even bits from the 128-bit key after each key 
round function the whole 128 bits of the secret key 
would be chosen at least once after six rounds. In our 
design, with the purpose of reaching the goal that all 
128 key bits being used in the encryption or decryption 
within four key round functions, we have found a 
preferred selection of 64 bits out of the 128-bit key by 
examining 100,000 randomly chosen selections for the 
64-bits to be applied in a round. This preferred 
selection function table used in the 
encryption/decryption process is listed in Table A3 of 
the Appendix.  

 
Table 2. Number of Key Bits Being Used Based on 

Different Key Selections 
 

Rnd 1 2 3 4 5 6 7 8 
Even  
Bits 64 99 118 126 127 128   

Right 
half 64 100 117 121 123 125 127 128 

Pref'd 64 97 117 128     
 

4. Security Analysis 
 
  In this section, we will discuss the resistance 
provided by our new block cipher against two 
important classes of cryptanalysis: differential and 
linear cryptanalysis. It will also be shown that our new 
cipher is resistant to two major key schedule 
insecurities: related-key attacks and weak keys.  
 
4.1. Differential Cryptanalysis 
 

Differential cryptanalysis [15] is a chosen plaintext 
attack that exploits the high probability of particular 
plaintext pair XOR differences and the corresponding 
differences of the ciphertexts. The differential 
characteristic probability determines the complexity of 
the attack and an upper bound can be estimated by 
using the minimum number of S-boxes involved in the 
attack over the rounds of the cipher and the highest 
differential characteristic probability of each S-box 
involved. The input and output XOR pair differences of 
involved S-boxes are combined from round to round in 
the way that the nonzero output pair differences are 
used as the input pair differences of the S-box in the 
next round. As a result, an (R-1)-round differential 
characteristic probability of the plaintext differences 
and the differences of the input to the last round can be 
achieved, where R represents the number of rounds in 
the cipher.  

For the 4×4 S-box applied in our cipher, the 
maximum differential characteristic probability of the 
S-box can be determined to be pδ = 1/4. To calculate the 
upper bound of the complete differential characteristic 
probability of the cipher, we need the maximum 
characteristic probability of the S-box in each round 
and the fewest active S-boxes involved in all rounds of 
the cipher. Based on the 4×4 S-boxes and the 
involutional permutation between the S-boxes, it is 
possible that a characteristic probability exists with 
only one active S-box affected in each round. As a 
result, the upper bound of the probability of the 
(R-1)-round differential characteristic consisting of the 
plaintext XOR difference and the input XOR difference 
to the last round of the cipher can be represented as 
follows: 

621 2−−
Ω =≤ Rpp δ  

where pδ represents the maximum differential 
characteristic of the S-box which is 1/4 as previously 
noted, and R represents the number of cipher rounds 
which is defined as 32 in our cipher. Consequently, 
since the complexity of the attack is inversely related to 
the differential probability pΩ, 262 chosen plaintext 
pairs would be needed to attack the cipher. This 
approaches the complexity required in a dictionary 
attack on a 64-bit cipher and hence it is reasonable to 



interpret the cipher as being resistant to differential 
cryptanalysis. Our computation of the differential 
characteristic probability is under the assumption that 
the difference XOR pairs of the S-boxes are 
independent which is a typical assumption made in 
security analyses.  
 
4.2. Linear Cryptanalysis 
 
  Linear cryptanalysis [16] is a known plaintext attack 
undertaken by constructing a linear path which uses a 
probabilistic relationship between the input and output 
bits of each S-box, combining the linear path of the 
S-box from round to round, and finally obtaining a high 
probability linear approximation expression between 
the plaintext, ciphertext and key without any 
intermediate values. The key information of the cipher 
may be extracted by using this linear approximation 
expression. Since the only nonlinear component of the 
cipher is the S-box, the linear approximation between 
the inputs and outputs of the S-boxes are important in 
constructing a (R-1)-round linear approximation based 
on the algorithm 2 presented in [16]. The linear 
approximation of the S-boxes can be concatenated to 
construct a linear expression with probability bias away 
from 1/2 involving only plaintext and the second last 
round outputs without any intermediate bits.  

Under the assumption that each S-box 
approximation is independent, the piling-up lemma in 
[16] can be used to determine the upper bound of the 
(R-1) linear approximation probability bias. To 
calculate the upper bound, we need the maximum linear 
approximation probability bias of the S-box in each 
round to be applied and the fewest active S-boxes 
involved in the whole rounds of the cipher. Based on 
the 4×4 S-box and the involutional permutation 
between the S-boxes, it is possible that a high linear 
approximation probability bias exists with only one 
active S-box affected in each round. As a result, the 
upper bound of the bias, εL, of the (R-1) linear 
approximation probability where the linear expression 
consists of the plaintext data bits and the data bits of the 
second last round output can be represented as follows: 

3212 22 −−− =≤ R
S

R
L εε  

where |εS| represents the maximum linear 
approximation probability bias of the S-box which is 
1/4 for the S-box of PUFFIN, and the number of rounds 
in PUFFIN is R = 32. In [16], Matsui shows that the 
number of the known plaintexts needed to perform 
linear cryptanalysis is proportional to 1/εL

2. Therefore, 
about 264 known plaintexts would be needed to attack 
our compact new cipher and linear cryptanalysis is not 
a practical attack against PUFFIN. Our analysis is 
based on the assumption, typically used in security 
analyses, that the S-box approximations used in the 

overall linear approximation may be treated 
independently. 
 
4.3. Related-Key Attacks 
 
  The related-key attack [14] can be either a chosen 
plaintext attack or low-complexity chosen key attack. 
In addition, one of the features of this attack is that it is 
independent of the number of the rounds in the cipher. 
In many block ciphers, the key scheduling algorithm 
can be considered as a set of algorithms, and each of the 
algorithms is used to derive one particular subkey from 
the subkeys of previous few rounds. If all the 
algorithms of deriving the subkeys used in the different 
rounds of the cipher are the same, then all the subkeys 
generated from a given key can be shifted one round 
backwards so that a new set of valid subkeys which can 
be generated from another cipher key can be obtained. 
These are so called related-keys defined in [14].  

The chosen key attacks can choose the relations 
between the related keys to extract the secret key 
information themselves. In other words, only the 
relationships of the keys are known to the attackers 
while the key information itself is unknown. When it 
comes to the key schedule of our new cipher, we can 
see that it is also resistant to the key-related attack, 
because the algorithms used to derive the subkey for 
particular rounds are not all the same. In our key 
schedule, the permutation and four selected bit 
inversion would be performed in most of the key 
rounds while the second, fifth, sixth and eighth key 
round are without the four selected bit inversions. This 
non-regularity in the key schedule algorithm allows our 
new cipher to provide resistance against the related-key 
attack.  
 
4.4. Weak Keys 
 
  Weak keys are keys for which all subkeys are 
identical in the encryption/decryption rounds of a 
cipher [13]. For semi-weak keys, there is a repetition of 
different subkeys used in the whole 
encryption/decryption process of a cipher. Weak keys, 
if they exist, usually represent a small part of the whole 
keyspace. In our key schedule of PUFFIN, due to the 
use of four selected bit inversions and the permutation 
of the key bits, there are no weak keys existing in our 
keyspace.  
 
5. Hardware Implementation of PUFFIN 
 

Our new compact block cipher PUFFIN has been 
designed for very efficient hardware implementations. 
The 4×4 S-boxes applied in the encryption or 
decryption process are easy to implement in hardware 
with simple combinational logic of 4-bit Boolean 



functions. All the components are involutional so that 
the encryption and decryption can share the same 
hardware. In addition, a very simple key schedule has 
been applied with only a permutation and bit inversions 
involved and it costs very limited hardware resources. 
All the subkeys can be generated on-the-fly so key 
storage is minimal. 

We have implemented the compact architecture of 
the new cipher targeted to ASIC technology, with a 
0.18 μm CMOS standard cell library based on the 
TSMC process. Synopsys Design Analyzer version 
X-2005.09 has been used as our synthesis tool.  
 
5.1. Encryption/Decryption Architecture  
 

  The loop architecture based on iterating one round 
of PUFFIN is shown in Figure 2 with the datapath for 
the encryption/decryption process and the key schedule 
illustrated. The round function of the encryption is 
composed of three stages: a substitution layer ("S-box"), 
a key addition layer ("XOR"), and a permutation layer 
("P64"). Only one register is inserted in the round 
function. The first stage of substitution layer is 
composed of sixteen 4×4 S-boxes which are used in 
parallel for substitution. The second stage of key 
addition layer is implemented as bitwise XORs 
between input data and the corresponding subkey. The 
permutation layer "P64" is simply implemented as 
wirings. Since all the components in PUFFIN are 
involutional, the decryption process can share exactly 
the same hardware with the encryption process. 

 

 
 

Figure 2. Datapath of PUFFIN 
 
For the architecture of the key scheduling with a key 

size of 128 bits, each key round function is composed 
of 128-bit permutation and four selected bit inversions 
to generate the subkeys used in the encryption process, 
represented by component "P128". Because the 128-bit 
permutation used in the key schedule is not involutional, 
an inverse 128-bit permutation is used in the key round 
for the decryption process as indicated by component 
"P128-Inv". The 128-bit permutation layer and inverse 
128-bit permutation layer are simply implemented as 

wirings with the four bit inversions as a few logic gates. 
The 64 subkey bits selected from the key schedule, can 
be directly applied in the encryption process, by 
choosing the right input to the multiplexer below the 
"Selection" component. However, the involutional 
permutation operation "P64" designed for the 
encryption/decryption process should be performed 
before using the selected subkey bits in the key addition 
of the decryption process in order to decrypt the 
ciphertext using the same hardware as encryption.  

In order to select 64 bits out of the 128-bit key to be 
used in the encryption or decryption process, the 
"Selection" component applies the preferred selection 
of 64 bits that was discussed in Section 3.3 and 
presented in Table A3. The "Selection" component 
requires no logic gates. Since no part of the datapath is 
shared between the encryption/decryption process and 
the key schedule, the subkeys used for each round 
function can be generated on-the-fly.  

In order to reduce the number of gates of the 
PUFFIN datapath, an improved circuit can be 
implemented, as shown in Figure 3. In this structure, 
the "Selection" and "P64" components are incorporated 
into new permutation structures "P128-Comb" and 
"P128-Inv-Comb". As the permutations only represent 
wirings, this is easily done with no extra gates, while 
eliminating the need for the multiplexer at the output of 
the "Selection" component in Figure 2.  

 

 
Figure 3. Improved Datapath of PUFFIN 

 
5.2 Hardware Performance Analysis in ASIC 
 

Based on the compact architecture of PUFFIN, we 
have evaluated the hardware performance in ASIC 
using a 0.18-μm CMOS standard cell library provided 
for the TSMC 1P6M process. Table 3 shows the 
hardware complexity analysis of each component of 
PUFFIN. All the S-boxes applied in our new cipher are 
independently implemented and separate logic gates 
are used to generate each output bit of the S-boxes. We 
can see that the cost of the S-boxes does not dominate 
the hardware resources of the datapath, as is typical of 
AES implementations based on the larger 8×8 S-boxes, 
only taking about 18% of the hardware area. The major 



hardware resources are the registers and multiplexers 
and they separately take 45% and 30% of the datapath 
hardware. The remaining XOR components require 
only about 7% of the hardware.   

 
Table 3. Hardware Complexity Analysis of PUFFIN 

 
Component Area (gates) Percentage 

S-boxes 475 18% 
Register 1152 45% 

Multiplexer 769 30% 
XOR 181 7% 

Datapath 2577 100% 
 
Table 4 shows the comparison of the hardware 

performance analysis between PUFFIN and several 
other recently proposed lightweight block ciphers 
targeted to embedded applications such as smartcards 
and RFID tags. For comparison in the table we provide 
the cipher parameters (block size and key size), 
encryption and/or decryption capabilities, circuit size 
(in terms of an equivalent number of gates), and 
throughputs based on the fastest clock and on a 
reference clock of 100 kHz. 

 
Table 4. Hardware Performance Analysis Comparison  

 
1 Area results for PRESENT given in [7] total to 1567 gates, while 

a study undertaken by authors of this paper found the area of 
PRESENT to be 1991 gates. It appears that this can be explained by 
the fact that the results from [7] do not seem to include the 
multiplexers.  

2 Results determined by authors of this paper. 
3 Reference [6] does not clarify whether implementation results 

are based on encryption-only or are for encryption/decryption 
architecture. Although DESL requires only 1850 gates, the small key 
size of 56 bits makes it unsuitable for most applications. 

4 It is not clear whether all areas specified for the different ciphers 
include circuitry needed for the state machine to control the iterative 
designs. For PUFFIN and PRESENT-80 in [7], the area specified 
does not include control circuitry. However, in any case, the required 
state machine is very small and likely to add no more than about 5% 
to the area of any cipher.  

From the table, several conclusions can be drawn. 
PUFFIN is a compact design that provides both 
encryption and decryption in one circuit with a small 
area. It has a strong security level of 128 bit key size 
and is capable of high throughput, both in terms of the 
reference clock of 100 kHz and the fastest possible 
clock. Although PRESENT-80 takes less area, it does 
so with the penalty of a smaller key size and without 
providing decryption capability. Other ciphers that are 
comparable in security (eg. ICEBERG and mCrypton) 
require more area to implement. DESXL, while being 
marginally smaller, is slower by a factor of about 5. 
Faster ciphers, such as mCrypton and ICEBERG, 
require more circuit area. 
 
6. Conclusion 
 

In this paper, we have proposed a new compact block 
cipher PUFFIN based on an involutional SPN structure. 
This new cipher features involutional operations 
resulting in an identical datapath for both encryption 
and decryption and has a simple key schedule capable 
of on-the-fly subkey generation. The result is a compact 
cipher design capable of encryption and decryption 
using a 128 bit key. 

For the ASIC implementation based on a 
0.18-micron CMOS standard cell design, PUFFIN 
requires only 2600 gates and can achieve throughputs 
up to 700 Mbps. Compared to other compact and 
lightweight block ciphers, it is fair to conclude that a 
PUFFIN implementation is small, fully capable of 
supporting modes requiring both encryption and 
decryption and has a high security level based on a 128 
bit key. 
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Appendix 

Table A1. 64-bit permutation ("P64") 
(input = row × 8 + column + 1) 

 0 1 2 3 4 5 6 7 

0 13 2 60 50 51 27 10 36 

1 25 7 32 61 1 49 47 19 

2 34 53 16 22 57 20 48 41 

3 9 52 6 31 62 30 28 11 

4 37 17 58 8 33 44 46 59 

5 24 55 63 38 56 39 15 23 

6 14 4 5 26 18 54 42 45 

7 21 35 40 3 12 29 43 64 

 
Table A2. 128-bit Permutation Used in Key Schedule 

for Encryption ("P128") (input = row × 8 + column + 1) 
 0 1 2 3 4 5 6 7 

0 22 121 126 110 79 81 116 55 

1 113 21 29 20 56 76 41 112 

2 45 109 95 87 94 44 68 8 

3 115 69 6 75 83 5 54 70 

4 23 61 106 103 85 124 111 52 

5 119 32 100 17 15 34 128 91 

6 58 99 120 67 31 98 53 71 

7 92 25 38 93 65 2 37 28 

8 24 82 88 14 96 118 1 9 

9 125 27 127 18 4 10 102 7 

10 35 105 48 63 30 77 72 50 

11 108 73 12 19 107 11 26 84 

12 47 97 117 49 46 33 16 42 

13 39 57 114 62 123 101 80 13 

14 51 122 64 89 43 60 40 3 

15 86 90 59 74 78 104 36 66 

 
Table A3. 64-bit Key Selection ("Selection") 

(input = row × 8 + column + 1) 
 0 1 2 3 4 5 6 7 

0 3 123 15 58 89 36 98 52 

1 57 63 100 70 46 71 94 51 

2 83 14 4 22 32 114 84 101 

3 12 23 31 65 41 96 120 50 

4 45 54 112 122 29 81 30 121 

5 97 55 26 64 24 117 19 9 

6 111 18 44 86 16 95 42 72 

7 2 91 118 124 38 48 43 39 

 


