

PUFFIN: A Novel Compact Block Cipher
Targeted to Embedded Digital Systems

Huiju Cheng, Howard M. Heys, and Cheng Wang

Electrical and Computer Engineering
Memorial University of Newfoundland

St. John's, Newfoundland, Canada
{chenghuiju, howard, cwang}@engr.mun.ca

Abstract

In this paper, we examine the digital hardware
design and implementation of a novel compact block
cipher, referred to as PUFFIN, that is suitable for
embedded applications. An implementation of PUFFIN
targeted to ASIC technology is considered. The
proposed block cipher is designed to have a 64-bit
block size, a 128-bit key, and is capable of both
encryption and decryption operations. The cipher
structure is based on the following features: a simple
encryption process composed of permutations and
substitutions based on 4×4 S-boxes, an identical
datapath for both encryption and decryption facilitated
by involutional operations, and a straightforward
on-the-fly subkey generation composed of only a
permutation and bit inversions. PUFFIN is found to
perform well for implementations based on
0.18-micron CMOS technology. In comparison to other
lightweight ciphers, PUFFIN has preferred features,
low hardware complexity, and good throughput.

1. Introduction

In this paper, we propose a novel block cipher, called
PUFFIN, based on a substitution-permutation network
(SPN) structure [1]. It is designed for applications
requiring low circuit area and is suitable for ASIC and
FPGA implementations. The new cipher features a
simplicity of design and, as an involutional block
cipher, is easily implemented to be capable of both
encryption and decryption functionality with a data
block size of 64 bits and a key size of 128 bits. To
achieve this we have utilized low complexity 4×4
S-boxes, instead of the expensive 8×8 S-boxes (which
are found, for example, in the Advanced Encryption
Standard (AES) [2]), as our nonlinear substitution
components and they can be easily implemented in
hardware with simple combinational logic of 4-bit
Boolean functions. In addition, the encryption or
decryption process may share the same hardware due to
the involutional nature of the components in the cipher.
We have also applied a very simple key schedule with

only a permutation and bit inversions so that the
subkeys can be derived on-the-fly and, hence, there is
no need to store all the subkeys. This simple key
schedule also ensures that the secret key can change in
a clock cycle and, hence, the cipher is highly key-agile.

All these characteristics make the new cipher very
efficient for hardware implementations which are
targeted to low cost embedded applications. The cipher
is also resistant to the two important classes of
cryptanalysis: differential and linear cryptanalysis.
Further, it also provides resistance to related-key
attacks and does not have any weak keys in the total
keyspace.

2. Background

In recent years, several papers have examined the
digital hardware implementation of lightweight block
ciphers targeted to embedded applications like
smartcards and RFID tags [3]. For example, it is well
known that the 8×8 S-box of AES is the greatest
consumer of circuit area in a CMOS design and, as a
result, in [4], a compact ASIC implementation of AES
is presented, which achieves low hardware complexity
through the re-use of a single component S-box circuit.
This implementation requires only 3400 gates but is
slow.

ICEBERG [5] is a proposal, with a 64 bit block size
and an 128 bit key, that is intended for efficient, high
speed applications targeted to reconfigurable hardware,
but that is also suitable for compact applications. It is
based on the SPN structure and uses S-boxes and
permutations that are involutions. Although it supports
both encryption and decryption operations, it does not
appear to be as compact as other proposed ciphers.

DESL [6] is a lightweight variant of the Data
Encryption Standard (DES) which makes use of only
one S-box mapping and can therefore be made to more
compact that DES (which uses 8 S-box mappings).
DESXL is a strengthened DESL variant with a key size
of 184 bits (although the effective key size is about 118
bits [3]).

Similar to our new compact block cipher PUFFIN, a

lightweight block cipher PRESENT [7] is a recently
proposed SPN. PRESENT is a 64-bit block cipher with
a key length of 80 or 128 and consists of 31 rounds. The
substitution layer applies sixteen 4×4 S-boxes, but
neither the S-box nor the 64-bit permutation is
involutional, and unlike PUFFIN, PRESENT is
designed and implemented to support encryption only.
Hence, while achieving a very compact implementation
of less than 2000 gates, PRESENT is not capable of
supporting modes (eg. cipher block chaining) that
require decryption. As well, the most compact
implementation of PRESENT has only an 80 bit key
size and is therefore only suitable to environments that
can accept limited security.

Other proposed compact block ciphers such as
mCrypton [8] and Hight [9] will be included in the
discussion of results in Section 5.2.

The block cipher proposed in this paper is very
compact, at least comparable in area complexity to
other proposals for embedded block ciphers and,
contrary to many other cipher implementations, is
capable of encryption and decryption. In addition,
PUFFIN has a large key size of 128 bits and, therefore,
is suitable for a range of embedded applications,
including those requiring a high level of security and
those which make use of modes requiring decryption.

3. Specifications of PUFFIN

The new block cipher PUFFIN proposed in this
paper applies a simple involutional SPN structure with
a data block size of 64 bits and the key size is specified
to be 128 bits. Although for some applications, a larger
block size offers better security, for embedded
applications, compact block ciphers are often proposed
with a block size of 64 bits (eg. ICEBERG, DESXL,
PRESENT). For the key size, generally 80 bits is
considered a minimal requirement for low-security
embedded applications. However, in practice a 128-bit
key is able to provide adequate security for any
application. (For example, AES has no specification for
key sizes less than 128 bits.) Hence, for our cipher, we
have assumed that a 128-bit key size is desired.

Generally, SPN ciphers require different datapaths
for encryption and decryption because the inverse
operations used in the decryption round are usually
different from those forward operations applied in the
encryption round. The advantage of our cipher is that
all the components are involutional which means the
inverse operations used in the decryption process can
be the same as those in the encryption process. Hence,
the involutional SPN structure allows a very efficient
implementation to use identical hardware for both
encryption and decryption. Other involutional ciphers
have been previously proposed in other contexts
[10][11], including, of course, ICEBERG [5].

3.1. Basic Components

In each round function of PUFFIN, three stages of
operations are applied. The first stage is the nonlinear
substitution layer, γ, which is composed of sixteen
identical 4×4 S-boxes. Often, 8×8 S-boxes are used in
block ciphers in consideration of their better nonlinear
and differential properties. In our proposed new block
cipher PUFFIN, we apply 4×4 S-boxes which are much
more compact and have a lower critical path delay from
input to output. Due to the use of more simple S-boxes,
we need to increase the number of rounds required to
produce the ciphertext in order to guarantee the security
of the cipher against cryptographic attacks such as
linear and differential cryptanalysis. The 4×4 S-boxes
used in our cipher are the same as the S0 mapping
applied in ICEBERG [5] and the S-box mapping is
shown in Table 1. From this table, we can see that the
S-box is involutional.

Table 1. S-box Mapping (in Hexadecimal) [5]

input 0 1 2 3 4 5 6 7

output D 7 3 2 9 A C 1
input 8 9 A B C D E F

output F 4 5 E 6 0 B 8

 In ICEBERG, 8×8 S-boxes are constructed from
three layers of 4×4 S-boxes combined with two layers
of eight 8-bit permutations. PUFFIN with just one layer
of sixteen 4×4 S-boxes, not surprisingly, results in a
more compact architecture than ICEBERG.

The second stage of the new block cipher’s round is
the key addition layer, σ, which is composed of the
bitwise XOR between the 64-bit data block and the
64-bit subkey. The subkey used in each round of the
encryption/decryption process can be derived from the
secret key of the cipher by the key schedule.

The third stage of the round is the permutation layer,
P64, which performs the transposition of the 64-bit data
block in PUFFIN. The permutation can be
implemented in wire crossings which do not cost any
hardware gates. The permutation table for P64 is listed
in Table A1 of the Appendix. It can be seen that
permutation P64 in an involution and satisfies the
property that no two outputs of a 4×4 S-box are
connected to the same S-box in the next round.

An important requirement for an SPN (or, indeed,
any block cipher) is the property of completeness [12].
Completeness is achieved in a cipher if all the
ciphertext bits are dependent on all the plaintext bits.
For PUFFIN, it can be shown that the completeness
property is satisfied after five rounds when applying the
S-boxes and permutations we have chosen. For the
whole encryption process of our new cipher, 32 rounds

are adequate to provide the necessary security of the
cipher. This will be justified in Section 4.

3.2. Encryption and Decryption Process

Each round function of the encryption or decryption
process is composed of three stages: substitution γ, key
addition σ, and permutation P64. In our new cipher, 32
rounds are needed to securely produce the ciphertext.
For the encryption, the 64-bit plaintext is first added
with the secret key and then permuted using P64.
Following is 32 identical round functions with the three
stages of substitution, round key addition, and
permutation. Figure 1 shows the diagram of the
encryption process.

R
ou

nd
 1

R
ou

nd
 3

1
R

ou
nd

 3
2

Figure 1. Block Diagram of the Encryption Process

The encryption process for PUFFIN can be

represented as follows:
],...,,[321032 KKKα
)64(64 32

10
POP

rKrK σγσ == .
In the above expressions of the encryption process, the
notation, "○", means the concatenation of the basic
operation in one stage such as substitution γ and key
addition σKr. The notation "O" is used to represent the
concatenation of 32 rounds of operation of (γ ○σKr
○P64). There are 33 cipher subkeys, K0 to K32.

Our compact new cipher is an involutional cipher so
that the decryption process is identical to the encryption

process after an additional permutation is performed on
the subkeys used in the decryption process. However,
the subkeys in the decryption process still should be
used in a reverse order.

Consider the following relationship:
6464)(64 PP

rr KPK σσ ≡ .
The decryption process of PUFFIN can be obtained as
follows:
],,...,,[013132

1
32 KKKK−α

0

64)64(1
32 KKr PPO

r
σγσ==

)64(64 0
3132 rKrK POP σγσ == .

Hence, we can obtain:
],,...,,[013132

1
32 KKKK−α

)64(64)(64
0

31)(64 32
POP

rKPrKP σγσ == .
As the representation shows above, the decryption
process can be performed in the same way as
encryption except that the subkeys should be used in a
reverse order and a corresponding permutation P64 is
applied to them before they are used for the key
addition stage in decryption.

3.3. Key Schedule

The key schedule portion of the cipher is responsible
for generating the 33 subkeys from the 128-bit cipher
key. We have designed a very simple key schedule to be
applied in our new compact block cipher PUFFIN. The
key schedule is designed to provide resistance to key
schedule cryptanalysis. All the subkeys are generated
on-the-fly in both the encryption and decryption
process. Therefore, it is not necessary to store all the
subkeys. For the purpose of compactness, our simple
key round function only performs a permutation and
selected bit inversions without any nonlinear
substitution operation. The permutations are
implemented as wirings which do not require any
hardware gates and the bit inversions also cost very
limited hardware.

The key schedule operates on 128 bits, initialized by
the cipher key using permutation and selected bit
inversions. The 128-bit permutation, used in the key
schedule and listed in Table A2 of the Appendix A,
performs a specially selected transposition of the 128
bits of the input key bits, and after this permutation, the
selected four bits in position 1, 2, 3, and 5 will be
inverted. As a result, four different positions of the bits
in the original cipher key are inverted after each key
round operation. The design goal of this combination of
permutation and inversion is to allow the key schedule
to be free of the weak keys which would cause security
problems in the cipher [13].

In addition, in order to be resistant to the related-key
attack [14], the selected four bit inversions are not
processed in each key round function so that

non-regularity can be provided between the generation
algorithms of the subkeys. In our key schedule, the
second, fifth, sixth and eighth key rounds will not
perform the inversions, while the remaining 28 rounds
will. We will discuss the security analysis of the key
schedule in more detail in Section 4.

The 128-bit permutation applied in the key schedule
is not designed to be involutional. Therefore, the
hardware of the key schedule used in the encryption
and decryption can not be the same. The corresponding
inverse 128-bit permutation is used in the subkey
generation for decryption. In the key round function of
decryption, the corresponding selected four bits in
position 30, 62, 71 and 120 will be inverted after the
128-bit permutation.

For the encryption or decryption of PUFFIN, the
subkeys require only 64 bits and, hence, an additional
key selection is needed in the key schedule to choose 64
bits out of the 128 key bits generated in the key
schedule. To achieve the goal of a very efficient
hardware implementation of a compact cipher, we
prefer to apply a simple key selection function without
costing any hardware resource. Another design
criterion related to security is that the fewest number of
rounds should be required to have every bit of the
128-bit key chosen at least once for a subkey.

We have tried many simple ways to perform the key
selection and have calculated the percentage of the bits
being used in PUFFIN encryption or decryption among
the whole 128 key bits after each round. Table 2 shows
the number of the key bits being used after each round
function until all the 128 key bits have been applied in
the encryption or decryption at least once based on
different key selection operations. For example, if we
choose the even bits from the 128-bit key after each key
round function the whole 128 bits of the secret key
would be chosen at least once after six rounds. In our
design, with the purpose of reaching the goal that all
128 key bits being used in the encryption or decryption
within four key round functions, we have found a
preferred selection of 64 bits out of the 128-bit key by
examining 100,000 randomly chosen selections for the
64-bits to be applied in a round. This preferred
selection function table used in the
encryption/decryption process is listed in Table A3 of
the Appendix.

Table 2. Number of Key Bits Being Used Based on

Different Key Selections

Rnd 1 2 3 4 5 6 7 8
Even
Bits 64 99 118 126 127 128

Right
half 64 100 117 121 123 125 127 128

Pref'd 64 97 117 128

4. Security Analysis

 In this section, we will discuss the resistance
provided by our new block cipher against two
important classes of cryptanalysis: differential and
linear cryptanalysis. It will also be shown that our new
cipher is resistant to two major key schedule
insecurities: related-key attacks and weak keys.

4.1. Differential Cryptanalysis

Differential cryptanalysis [15] is a chosen plaintext
attack that exploits the high probability of particular
plaintext pair XOR differences and the corresponding
differences of the ciphertexts. The differential
characteristic probability determines the complexity of
the attack and an upper bound can be estimated by
using the minimum number of S-boxes involved in the
attack over the rounds of the cipher and the highest
differential characteristic probability of each S-box
involved. The input and output XOR pair differences of
involved S-boxes are combined from round to round in
the way that the nonzero output pair differences are
used as the input pair differences of the S-box in the
next round. As a result, an (R-1)-round differential
characteristic probability of the plaintext differences
and the differences of the input to the last round can be
achieved, where R represents the number of rounds in
the cipher.

For the 4×4 S-box applied in our cipher, the
maximum differential characteristic probability of the
S-box can be determined to be pδ = 1/4. To calculate the
upper bound of the complete differential characteristic
probability of the cipher, we need the maximum
characteristic probability of the S-box in each round
and the fewest active S-boxes involved in all rounds of
the cipher. Based on the 4×4 S-boxes and the
involutional permutation between the S-boxes, it is
possible that a characteristic probability exists with
only one active S-box affected in each round. As a
result, the upper bound of the probability of the
(R-1)-round differential characteristic consisting of the
plaintext XOR difference and the input XOR difference
to the last round of the cipher can be represented as
follows:

621 2−−
Ω =≤ Rpp δ

where pδ represents the maximum differential
characteristic of the S-box which is 1/4 as previously
noted, and R represents the number of cipher rounds
which is defined as 32 in our cipher. Consequently,
since the complexity of the attack is inversely related to
the differential probability pΩ, 262 chosen plaintext
pairs would be needed to attack the cipher. This
approaches the complexity required in a dictionary
attack on a 64-bit cipher and hence it is reasonable to

interpret the cipher as being resistant to differential
cryptanalysis. Our computation of the differential
characteristic probability is under the assumption that
the difference XOR pairs of the S-boxes are
independent which is a typical assumption made in
security analyses.

4.2. Linear Cryptanalysis

 Linear cryptanalysis [16] is a known plaintext attack
undertaken by constructing a linear path which uses a
probabilistic relationship between the input and output
bits of each S-box, combining the linear path of the
S-box from round to round, and finally obtaining a high
probability linear approximation expression between
the plaintext, ciphertext and key without any
intermediate values. The key information of the cipher
may be extracted by using this linear approximation
expression. Since the only nonlinear component of the
cipher is the S-box, the linear approximation between
the inputs and outputs of the S-boxes are important in
constructing a (R-1)-round linear approximation based
on the algorithm 2 presented in [16]. The linear
approximation of the S-boxes can be concatenated to
construct a linear expression with probability bias away
from 1/2 involving only plaintext and the second last
round outputs without any intermediate bits.

Under the assumption that each S-box
approximation is independent, the piling-up lemma in
[16] can be used to determine the upper bound of the
(R-1) linear approximation probability bias. To
calculate the upper bound, we need the maximum linear
approximation probability bias of the S-box in each
round to be applied and the fewest active S-boxes
involved in the whole rounds of the cipher. Based on
the 4×4 S-box and the involutional permutation
between the S-boxes, it is possible that a high linear
approximation probability bias exists with only one
active S-box affected in each round. As a result, the
upper bound of the bias, εL, of the (R-1) linear
approximation probability where the linear expression
consists of the plaintext data bits and the data bits of the
second last round output can be represented as follows:

3212 22 −−− =≤ R
S

R
L εε

where |εS| represents the maximum linear
approximation probability bias of the S-box which is
1/4 for the S-box of PUFFIN, and the number of rounds
in PUFFIN is R = 32. In [16], Matsui shows that the
number of the known plaintexts needed to perform
linear cryptanalysis is proportional to 1/εL

2. Therefore,
about 264 known plaintexts would be needed to attack
our compact new cipher and linear cryptanalysis is not
a practical attack against PUFFIN. Our analysis is
based on the assumption, typically used in security
analyses, that the S-box approximations used in the

overall linear approximation may be treated
independently.

4.3. Related-Key Attacks

 The related-key attack [14] can be either a chosen
plaintext attack or low-complexity chosen key attack.
In addition, one of the features of this attack is that it is
independent of the number of the rounds in the cipher.
In many block ciphers, the key scheduling algorithm
can be considered as a set of algorithms, and each of the
algorithms is used to derive one particular subkey from
the subkeys of previous few rounds. If all the
algorithms of deriving the subkeys used in the different
rounds of the cipher are the same, then all the subkeys
generated from a given key can be shifted one round
backwards so that a new set of valid subkeys which can
be generated from another cipher key can be obtained.
These are so called related-keys defined in [14].

The chosen key attacks can choose the relations
between the related keys to extract the secret key
information themselves. In other words, only the
relationships of the keys are known to the attackers
while the key information itself is unknown. When it
comes to the key schedule of our new cipher, we can
see that it is also resistant to the key-related attack,
because the algorithms used to derive the subkey for
particular rounds are not all the same. In our key
schedule, the permutation and four selected bit
inversion would be performed in most of the key
rounds while the second, fifth, sixth and eighth key
round are without the four selected bit inversions. This
non-regularity in the key schedule algorithm allows our
new cipher to provide resistance against the related-key
attack.

4.4. Weak Keys

 Weak keys are keys for which all subkeys are
identical in the encryption/decryption rounds of a
cipher [13]. For semi-weak keys, there is a repetition of
different subkeys used in the whole
encryption/decryption process of a cipher. Weak keys,
if they exist, usually represent a small part of the whole
keyspace. In our key schedule of PUFFIN, due to the
use of four selected bit inversions and the permutation
of the key bits, there are no weak keys existing in our
keyspace.

5. Hardware Implementation of PUFFIN

Our new compact block cipher PUFFIN has been
designed for very efficient hardware implementations.
The 4×4 S-boxes applied in the encryption or
decryption process are easy to implement in hardware
with simple combinational logic of 4-bit Boolean

functions. All the components are involutional so that
the encryption and decryption can share the same
hardware. In addition, a very simple key schedule has
been applied with only a permutation and bit inversions
involved and it costs very limited hardware resources.
All the subkeys can be generated on-the-fly so key
storage is minimal.

We have implemented the compact architecture of
the new cipher targeted to ASIC technology, with a
0.18 μm CMOS standard cell library based on the
TSMC process. Synopsys Design Analyzer version
X-2005.09 has been used as our synthesis tool.

5.1. Encryption/Decryption Architecture

 The loop architecture based on iterating one round
of PUFFIN is shown in Figure 2 with the datapath for
the encryption/decryption process and the key schedule
illustrated. The round function of the encryption is
composed of three stages: a substitution layer ("S-box"),
a key addition layer ("XOR"), and a permutation layer
("P64"). Only one register is inserted in the round
function. The first stage of substitution layer is
composed of sixteen 4×4 S-boxes which are used in
parallel for substitution. The second stage of key
addition layer is implemented as bitwise XORs
between input data and the corresponding subkey. The
permutation layer "P64" is simply implemented as
wirings. Since all the components in PUFFIN are
involutional, the decryption process can share exactly
the same hardware with the encryption process.

Figure 2. Datapath of PUFFIN

For the architecture of the key scheduling with a key

size of 128 bits, each key round function is composed
of 128-bit permutation and four selected bit inversions
to generate the subkeys used in the encryption process,
represented by component "P128". Because the 128-bit
permutation used in the key schedule is not involutional,
an inverse 128-bit permutation is used in the key round
for the decryption process as indicated by component
"P128-Inv". The 128-bit permutation layer and inverse
128-bit permutation layer are simply implemented as

wirings with the four bit inversions as a few logic gates.
The 64 subkey bits selected from the key schedule, can
be directly applied in the encryption process, by
choosing the right input to the multiplexer below the
"Selection" component. However, the involutional
permutation operation "P64" designed for the
encryption/decryption process should be performed
before using the selected subkey bits in the key addition
of the decryption process in order to decrypt the
ciphertext using the same hardware as encryption.

In order to select 64 bits out of the 128-bit key to be
used in the encryption or decryption process, the
"Selection" component applies the preferred selection
of 64 bits that was discussed in Section 3.3 and
presented in Table A3. The "Selection" component
requires no logic gates. Since no part of the datapath is
shared between the encryption/decryption process and
the key schedule, the subkeys used for each round
function can be generated on-the-fly.

In order to reduce the number of gates of the
PUFFIN datapath, an improved circuit can be
implemented, as shown in Figure 3. In this structure,
the "Selection" and "P64" components are incorporated
into new permutation structures "P128-Comb" and
"P128-Inv-Comb". As the permutations only represent
wirings, this is easily done with no extra gates, while
eliminating the need for the multiplexer at the output of
the "Selection" component in Figure 2.

Figure 3. Improved Datapath of PUFFIN

5.2 Hardware Performance Analysis in ASIC

Based on the compact architecture of PUFFIN, we
have evaluated the hardware performance in ASIC
using a 0.18-μm CMOS standard cell library provided
for the TSMC 1P6M process. Table 3 shows the
hardware complexity analysis of each component of
PUFFIN. All the S-boxes applied in our new cipher are
independently implemented and separate logic gates
are used to generate each output bit of the S-boxes. We
can see that the cost of the S-boxes does not dominate
the hardware resources of the datapath, as is typical of
AES implementations based on the larger 8×8 S-boxes,
only taking about 18% of the hardware area. The major

hardware resources are the registers and multiplexers
and they separately take 45% and 30% of the datapath
hardware. The remaining XOR components require
only about 7% of the hardware.

Table 3. Hardware Complexity Analysis of PUFFIN

Component Area (gates) Percentage

S-boxes 475 18%
Register 1152 45%

Multiplexer 769 30%
XOR 181 7%

Datapath 2577 100%

Table 4 shows the comparison of the hardware

performance analysis between PUFFIN and several
other recently proposed lightweight block ciphers
targeted to embedded applications such as smartcards
and RFID tags. For comparison in the table we provide
the cipher parameters (block size and key size),
encryption and/or decryption capabilities, circuit size
(in terms of an equivalent number of gates), and
throughputs based on the fastest clock and on a
reference clock of 100 kHz.

Table 4. Hardware Performance Analysis Comparison

1 Area results for PRESENT given in [7] total to 1567 gates, while

a study undertaken by authors of this paper found the area of
PRESENT to be 1991 gates. It appears that this can be explained by
the fact that the results from [7] do not seem to include the
multiplexers.

2 Results determined by authors of this paper.
3 Reference [6] does not clarify whether implementation results

are based on encryption-only or are for encryption/decryption
architecture. Although DESL requires only 1850 gates, the small key
size of 56 bits makes it unsuitable for most applications.

4 It is not clear whether all areas specified for the different ciphers
include circuitry needed for the state machine to control the iterative
designs. For PUFFIN and PRESENT-80 in [7], the area specified
does not include control circuitry. However, in any case, the required
state machine is very small and likely to add no more than about 5%
to the area of any cipher.

From the table, several conclusions can be drawn.
PUFFIN is a compact design that provides both
encryption and decryption in one circuit with a small
area. It has a strong security level of 128 bit key size
and is capable of high throughput, both in terms of the
reference clock of 100 kHz and the fastest possible
clock. Although PRESENT-80 takes less area, it does
so with the penalty of a smaller key size and without
providing decryption capability. Other ciphers that are
comparable in security (eg. ICEBERG and mCrypton)
require more area to implement. DESXL, while being
marginally smaller, is slower by a factor of about 5.
Faster ciphers, such as mCrypton and ICEBERG,
require more circuit area.

6. Conclusion

In this paper, we have proposed a new compact block
cipher PUFFIN based on an involutional SPN structure.
This new cipher features involutional operations
resulting in an identical datapath for both encryption
and decryption and has a simple key schedule capable
of on-the-fly subkey generation. The result is a compact
cipher design capable of encryption and decryption
using a 128 bit key.

For the ASIC implementation based on a
0.18-micron CMOS standard cell design, PUFFIN
requires only 2600 gates and can achieve throughputs
up to 700 Mbps. Compared to other compact and
lightweight block ciphers, it is fair to conclude that a
PUFFIN implementation is small, fully capable of
supporting modes requiring both encryption and
decryption and has a high security level based on a 128
bit key.

Acknowledgements

 This work was funded by the Natural Sciences and
Engineering Research Council of Canada (NSERC)
and facilitated by tools provided by CMC
Microsystems.

References

[1] A. Menezes, P.C. van Oorschot, and S. Vanstone, The

Handbook of Applied Cryptography, CRC Press, 1996.
[2] National Institute of Standards and Technology (NIST),

"Advanced Encryption Standard (AES)", Federal
Information Processing Standard (FIPS) 197, Nov. 2001.
Available at csrc.nist.gov/publications.

[3] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L.
Uhsadel, "A Survey of Lightweight Cryptography
Implementations", IEEE Design and Test, vol. 24, no. 6,
Nov. 2007, pp. 522-533.

[4] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, "AES
Implementation on a Grain of Sand", IEE Proceedings,
vol. 152, no. 1, 2005, pp. 13-20.

Cipher Block
/Key
Size

Enc
+

Dec

Logic
Proc
(μm)

Area4
(gates)

Throughput
@ 100kHz

(fastest)
PUFFIN

64

/128
Yes 0.18 2577 194 kbps

(727 Mbps)
AES-128

[4]
128
/128

Yes 0.35 3400 12.4 kbps
(9.9 Mbps)

PRESENT1

[7]
64
/80

No 0.18 1567
(1991)

200 kbps
(658 Mbps2)

ICEBERG
[17]

64
/128

Yes 0.18 5817 400 kbps
(552 Mbps)

DESXL3
[6]

64
/118

? 0.18 2168 44.4 kbps
(unknown)

HIGHT
[9]

64
/128

No 0.25 3048 188 kbps
(151 Mbps)

mCrypton
[8]

64
/96

Yes 0.13 3789 492 kbps
(unknown)

64
/96

No 0.13 2681 492 kbps
(unknown)

[5] F. Standaert, G. Piret, G. Rouvroy, J. Quisquater, and J.
Legat, “ICEBERG: an Involutional Cipher Efficient for
Block Encryption in Reconfigurable Hardware”, Fast
Software Encryption (FSE 2004), LNCS 3017,
Springer-Verlag, 2004, pp. 279-299.

[6] G. Leander, C. Paar, A. Poschmann, and K. Schramm,
"New Lightweight DES Variants", Fast Software
Encryption (FSE 2007), LNCS 4593, Springer-Verlag,
2007, pp. 196-210.

[7] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A.
Poschmann, M.J.B. Robshaw, Y. Seurin, and C.
Vikkelsoe, “PRESENT: An Ultra-Lightweight Block
Cipher”. Cryptographic Hardware and Embedded
Systems (CHES 2007), LNCS 4727, Springer-Verlag,
2007 pp. 450-466.

[8] C.H. Loon and T. Korkishko, "mCrypton - A Lightweight
Block Cipher for Security of Low-Cost RFID Tags and
Sensors", Information Security Applications (WISA
2005), LNCS 3786, Springer-Verlag, 2006, pp. 243-258.

[9] D. Hong, et al., "HIGHT: A New Block Cipher Suitable
for Low Resource Device", Cryptographic Hardware
and Embedded Devices (CHES 2006), LNCS 4249,
Spring-Verlag, 2006, pp. 46-59.

[10] A. Youssef, S.E. Tavares, and H.M. Heys, "A New Class
of Substitution Permutation Networks", Proceedings of
Workshop on Selected Areas in Cryptography (SAC '96),
Queen's University, Kingston, Ontario, Aug. 1996.

[11] P. Barreto and V. Rijmen, "The Anubis Block Cipher",
submitted to the NESSIE Project at
www.cosic.esat.kuleuven.be/nessie.

[12] J.B. Kam and G.I. Davida, "Structured Design of
Substitution-Permutation Encryption Networks", IEEE
Transactions on Computers, vol. C-28, no. 10, 1979, pp.
747-753.

[13] J. H. Moore, and G. J. Simmons, "Cycle Structure of the
DES for Keys Having Palindromic (or Antipalindromic)
Sequences of Round Keys", IEEE Transactions on
Software Engineering, vol. SE-13, no. 2, 1987, pp.
262-273.

[14] E. Biham, "New Type of Cryptanalysis Attacks Using
Related Keys", Advances in Cryptology: EUROCRYPT
'93, LNCS 765, Springer-Verlag, 1994, pp. 229-246.

[15] E. Biham and A. Shamir, "Differential Cryptanalysis of
DES-like Cryptosystems", Advances in Cryptology:
CRYPTO’90, LNCS 537, Springer-Verlag, 1991, pp.
2-21.

[16] M. Matsui, “Linear Cryptanalysis Method for DES
Cipher”, Advances in Cryptology: EUROCRYPT '93,
LNCS 765, Springer-Verlag, 1994, pp. 386-397.

[17] H. Cheng and H.M. Heys, "Compact ASIC
Implementation of the ICEBERG Block Cipher with
Concurrent Error Detection", Int'l Symposium on Circuits
and Systems (ISCAS 2008), Seattle, Wash., May 2008.

Appendix

Table A1. 64-bit permutation ("P64")
(input = row × 8 + column + 1)

 0 1 2 3 4 5 6 7

0 13 2 60 50 51 27 10 36

1 25 7 32 61 1 49 47 19

2 34 53 16 22 57 20 48 41

3 9 52 6 31 62 30 28 11

4 37 17 58 8 33 44 46 59

5 24 55 63 38 56 39 15 23

6 14 4 5 26 18 54 42 45

7 21 35 40 3 12 29 43 64

Table A2. 128-bit Permutation Used in Key Schedule

for Encryption ("P128") (input = row × 8 + column + 1)
 0 1 2 3 4 5 6 7

0 22 121 126 110 79 81 116 55

1 113 21 29 20 56 76 41 112

2 45 109 95 87 94 44 68 8

3 115 69 6 75 83 5 54 70

4 23 61 106 103 85 124 111 52

5 119 32 100 17 15 34 128 91

6 58 99 120 67 31 98 53 71

7 92 25 38 93 65 2 37 28

8 24 82 88 14 96 118 1 9

9 125 27 127 18 4 10 102 7

10 35 105 48 63 30 77 72 50

11 108 73 12 19 107 11 26 84

12 47 97 117 49 46 33 16 42

13 39 57 114 62 123 101 80 13

14 51 122 64 89 43 60 40 3

15 86 90 59 74 78 104 36 66

Table A3. 64-bit Key Selection ("Selection")

(input = row × 8 + column + 1)
 0 1 2 3 4 5 6 7

0 3 123 15 58 89 36 98 52

1 57 63 100 70 46 71 94 51

2 83 14 4 22 32 114 84 101

3 12 23 31 65 41 96 120 50

4 45 54 112 122 29 81 30 121

5 97 55 26 64 24 117 19 9

6 111 18 44 86 16 95 42 72

7 2 91 118 124 38 48 43 39

