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Chapter 2: 
Sequences and Series
§ 2.1 
Sequences

Sequence: 


A sequence is a set of elements.   The elements of the set can be either numbers or letters or a combination of both.   The elements of the set all follow the same rule (logical progression).   The number of elements in the set can be either finite or infinite.   A sequence is usually represented by using brackets of the form { } and placing either the rule or a number of the elements inside the brackets.   Some simple examples of sequences are listed below.

The alphabet: 
{a, b, c, ..., z}

The set of natural numbers less than or equal to 50: 
{1, 2, 3, 4, ..., 50}

The set of all natural numbers: 
{1, 2, 3, ..., n, ...}

The set   {an}   where   an = an1 + 2,   a1 = 1

NOTE: 
As this last example suggests, the general element of the sequence is normally represented by using a subscripted letter, with the range of the subscript being the natural (counting) numbers unless otherwise noted.

The two items of greatest interest with sequences are 

(1) 
the representation of the general term of the sequence if not given, and 

(2) 
what happens to the value of the general term as the value of the subscript increases. 

The determination of the general term, when not given explicitly, can frequently be quite challenging, because it rests primarily on pattern recognition.

As the value of the subscript increases (tends to infinity) the general term of the sequence may or may not have a single value.   If it does have a single finite value, then the sequence is said to converge, and the sequence converges to that single finite value.   If the limiting value is infinite or if no limiting value exists then the sequence is said to diverge. 

Symbolically: 


Given {an}, 
if  
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Otherwise the sequence diverges.

Algebra of sequences: 


Given any two sequences {an} with limit value A, {bn} with limit value B, and any two scalars  k, p,  the following are always true:

(a) 
{k an + p bn } is a convergent sequence with limit value  kA + pB
(b) 
{ an bn } is a convergent sequence with limit value  AB
(c) 
{ an / bn } is a convergent sequence with limit value  A/B  provided that  B ( 0

(d) 
if  f (x) is a continuous function with 
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, and if  an = f (n) for all values of  n  then {an} converges and has the limit value  L
(e) 
if  an ( cn ( bn ,  then  {cn}  converges with limit value  C  where  A ( C ( B
Item (d) above permits us to use methods from the theory of functions, for example L’Hôpital’s rule, and in item (e) above if the limit values of the sequences  {an} and {bn}  are both the same, then this is called the squeeze theorem.

If each element of a sequence  {an}  is no less than all of its predecessors   (a1 ( a2 ( a3 ( a4  ( ...) then the sequence is called an increasing sequence.

If each element of a sequence {an} is no greater than all of its predecessors  

(a1  ( a2 ( a3 ( a4  ( ...) then the sequence is called a decreasing sequence.

A monotonic sequence is one in which the elements are either increasing or decreasing.

If there exists a number  M  such that  ( an ( (  M  for all values of  n  then the sequence is said to be bounded.

Theorem:
Every bounded monotonic sequence is convergent.

Standard Sequences: 


Some of the most important sequences are

(1) 
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This sequence converges whenever  1 < r ( 1.

(2) 
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This sequence converges whenever  r ( 0.

Examples: Only two examples are presented here. They are examples of items (d), and (e) above.

Sample Problem 1:

Find the limit of 
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sin
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Consider 
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.    We know from L’Hôpital’s Rule that as  x  approaches zero, the function approaches the limit value of one.    Hence, by item (d) above the sequence converges and has the limit value of one.

Sample Problem 2:

Find the limit of 
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Here we wish to use item (e) above as the squeeze theorem.   It is easy to show that for every value of  n , 
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, and that both the first and third sequences converge and that they both have the limit value of zero.   Hence, it follows that 
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 converges and also has the limit value of zero.

§ 2.2 
Series
Series: 


A series is a sum of elements.   The sum can be finite or it can be infinite.   The elements of the series can be either numbers or letters or a combination of both.   A series can be represented 

(a) by listing a number of elements along with the appropriate sign (+ or ) between the elements OR 

(b) by using what is called sigma notation with only the general term and the range of summation indicated.

Examples:

(1)   
1  2 + 3  4 + 5  6 + 7  8 + 9  10

(2)   
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Both of these examples represent the same series.

As with sequences the main areas of interest with series are: 

(a) the determination of the general term of the series if the general term is not given, and 

(b) finding out whether or not the sum of the given series exists. 

Again as with sequences the determination of the general term of the series, if the general term is not given, relies heavily on pattern recognition. 

For a series that contains only finitely many terms, the sum always exists provided that each of the terms of the series is finite.

For a series that contains infinitely many terms we need to use the following theorem.

Theorem: 
A series converges iff the associated sequence of partial sums represented by {Sk} converges.   The element   Sk   in the sequence above is defined as the sum of the first “k” terms of the series.

In the remaining sections of this chapter, a number of different kinds of series will be considered. They, generally speaking, fall into one of the following categories:


(a) 
telescoping series


(b) 
geometric series


(c) 
hyperharmonic series (also known as  p-series) 


(d) 
alternating series


(e) 
power series


(f) 
binomial series


(g) 
Taylor series

We will also consider a number of tests that make it unnecessary to use the theorem mentioned above.   The various tests that will be studied are:


(i) 
nth term test (also known as the divergence test) 


(ii) 
geometric series test


(iii) 
integral test


(iv) 
comparison tests


(v) 
alternating series test 


(vi) 
ratio test 


(vii) 
root test

For a series with both positive and negative terms it is necessary to consider two different kinds of convergence.   These are conditional convergence, and absolute convergence. 

If a series contains only positive terms, then conditional convergence is impossible, and we usually refer simply to convergence in this case.

Properties of series:

(a) 
adding or deleting a finite number of finite terms in a given series has no effect on the convergence of the given series

(b) 
if the series  ( an  converges and has sum  A, and if the series  ( bn  converges and has sum B, and if  p and q  are any finite constants, then  ( (pan + q bn)  converges and has sum  (pA + qB).

§ 2.3 
Series Tests
In this section the various tests mentioned in the previous section will be introduced, and a number of examples will be considered in class to illustrate the various tests.

General (nth) Term Test (also known as the Divergence Test):

If  
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 diverges.

NOTE: 
This test is a test for divergence only, and says nothing about convergence.

Geometric Series Test:

A geometric series has the form 
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, where “a” is some fixed scalar (real number). 

A series of this type will converge provided that (r(< 1, and the sum is 
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A proof of this result follows. 

Consider the  kth partial sum, and “r” times the  kth  partial sum of the series
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The difference between  rSk  and  Sk  is  
[image: image17.wmf](

)

(

)

1

1

1

-

=

-

+

k

k

r

a

S

r

. 

Provided that  r ( 1, we can divide by  (r  1), to obtain   
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Since the only place that “k” appears on the right in this last equation is in the numerator, the limit of the sequence of partial sums {Sk} will exist iff the limit as  k ( (  exists as a finite number. This is possible iff (r(< 1, and if this is true then the limit value of the sequence of partial sums, and hence the sum of the series, is  
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Telescoping Series:
Generally, a telescoping series is a series in which the general term is a ratio of polynomials in powers of  “n”.   The method of partial fractions (learned when studying techniques of integration) is normally used to rewrite the general term, and then the sequence of partial sums is studied.   This sequence will, most of the time, simplify to just a few terms, and the limit can then be determined.   One example of a telescoping series will be presented here, and additional examples in class.

Sample Problem 3:

Evaluate 
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The general term  an  can be rewritten as  
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We now consider the partial sums  S1, S2, S3, ..., Sn, ...  until a pattern emerges and then the limit value  S  will be determined.
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Since we have now determined the general pattern, the limit value  S  of the sequence of partial sums, and hence the sum of the series is seen to have a value of  “1”.

Integral Test:
Given a series of the form 
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, set  an = f(n)  where  f(x)  is a continuous function with positive values that are decreasing for  x ( k.   If the improper integral   
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  exists as a finite real number, then the given series converges.    If the improper integral above does not have a finite value, then the series above diverges.

If the improper integral exists, then the following inequality is always true
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By adding the terms from  n = k  to  n = p  to each expression in the inequalities above it is possible to put both upper and lower bounds on the sum of the series.   Also it is possible to estimate the error generated in estimating the sum of the series by using only the first “p” terms. If the error is represented by  Rp, then it follows that 
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Comparison Tests:
There are four comparison tests that are used to test series.   There are two convergence tests, and two divergence tests.   In order to use these tests it is necessary to know a number of convergent series and a number of divergent series.   For the tests that follow we shall assume that  
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 is some known convergent series, that 
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 is the series to be tested.   Also it is to be assumed that for  n ( {1, 2, 3, ..., (k1)} the values of  an are finite, and that each of the series contains only positive terms.

Standard Comparison Tests: 
  Convergence Test: 

If  
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then 
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  Divergence Test: 

If  
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then 
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 is a divergent series.

Limit Comparison Tests:

  Convergence Test: 

If 
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 is a convergent series and  
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where 0 ( L < (, then 
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 is a convergent series.

  Divergence Test: 

If 
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where 0 < L ( (, then 
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 is a divergent series.

The choice for the reference series 
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or the hyperharmonic series (or p-series)  
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The  p-series  
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A special case is the harmonic series 
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[The alternating  p-series  
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Alternating Series Test:
Given a series  
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  for all  n  ( k , 

if  
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Ratio Test:
Given a series 
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with no restriction on the values of the  an’s except that they are finite, and that  
[image: image53.wmf]L

a

a

n

n

n

=

+

¥

®

1

lim

, the series converges absolutely whenever  0 ( L < 1, diverges whenever

  1 < L ( (, and the test fails if  L = 1.

Root Test:
Given a series 
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with no restriction on the values of the  an’s except that they are finite, and that  
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, the series converges absolutely whenever  0 ( L < 1, diverges whenever

  1 < L ( (, and the test fails if  L = 1.

Absolute and Conditional Convergence:

A convergent series that contains an infinite number of both negative and positive terms must be tested for absolute convergence.   

A series of the form 
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 the series of absolute values is convergent.   

If 
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 the series of absolute values is divergent, then the series 
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A shortcut:

In some cases it is easier to show that 
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It then follows immediately that the original series 
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§ 2.4 
Power Series
Any series of the form 
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where  b ( (  and  k = any non-zero real number  is called a power series.   It is a series in powers of (xa), where “a” is called the centre of the series.   A power series can be tested to determine absolute convergence by means of the ratio test, introduced in the previous section.   If we compare the terms of this series with the general term of the series 
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This is equivalent to requiring that  
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   (in the case k > 0).   

The series may converge absolutely, converge conditionally or diverge when
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  or when  
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These two points must be considered separately. 

For all other values of  | xa|  the series diverges. 

The entire set of values of  (xa)  for which the series converges (absolutely or conditionally) is called the interval of convergence  I.   The radius of convergence  R  for the power series is
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One example, only, will be considered here, and a number of additional examples will be considered in class.

Sample Problem 4:

Find the radius of convergence and the interval of convergence for the series 
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The radius of convergence is   R = 1.   

When  (x + 3) = 1, the given series becomes 
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 which is a divergent series.   

When  (x + 3) = 1, the given series becomes 
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 which is a [conditionally] convergent alternating series. 

Hence, the series will converge whenever   1 (  x+3  < 1. 

This can also be expressed by saying that the interval of convergence  I  for this series is

I   =  {x | 4 ( x < 2 }, or  I   =  [(4, (2) .

§ 2.5 
Taylor Polynomials and Taylor Series

In this section we start by establishing a polynomial (a Taylor Polynomial) of order “n” for a given function  f (x).   This polynomial has the property that the kth derivative of the polynomial and the kth derivative of the function agree (have the same value) at a given point at which the function and its first “n” derivatives are defined.   For convenience the kth derivatives of the function  f (x)  and the polynomial  Pn(x)  shall be represented respectively as follows:
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where  k ( {0, 1, 2, 3, ..., n}.

Let the function  f (x)  and its first “n” derivatives be defined at the point  xo, and let the polynomial have the form 
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As stated above we wish to find conditions such that  f (k)(xo) = Pn(k)(xo) , with

k ( {0, 1, 2, 3, ..., n}.

For   Pn(k)(x)   and  f (k)(x)  at  x = xo with  k = 0 we have 
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and 
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The function and the polynomial agree if we set   c0 =  f (x).

For   Pn(k)(x)   and  f (k)(x)  at  x = xo with  k = 1 we have 
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and 


[image: image82.wmf](

)

)

(

)

(

1

1

1

o

x

x

x

f

dx

x

f

d

o

=

=

. 

The function and the polynomial agree if we set   1c1 = f (1)(xo).

For   Pn(k)(x)   and  f (k)(x)  at  x = xo with  k = 2 we have 
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The function and the polynomial agree if we set   2c2 = f (2)(xo).

For   Pn(k)(x)   and  f (k)(x)  at  x = xo with  k = 3 we have 
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The function and the polynomial agree if we set   6c3 = f (3)(xo).

For   Pn(k)(x)   and  f (k)(x)  at  x = xo with  k = n  we have 
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The function and the polynomial agree if we set   (n!) cn = f (n)(xo).

To summarize, the polynomial  Pn (x)  and the function  f (x)  and their first “k” derivatives, where   k ( {0, 1, 2, 3, ..., n}, will agree at x = xo if we set  
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Next we would like to have one or more conditions under which we may extend the Taylor polynomial to an infinite power series called a Taylor Series.   When this is possible we may apply the ratio test to determine the radius of convergence and the interval of convergence.   That is we would like to know for what set of values of  “x” the Taylor Series converges to the function  f (x).

Unless the function  f (x)  is itself a polynomial of degree less than or equal to “n”, there will always be an error in approximating the function  f (x)  by the Taylor Polynomial  Pn(x)  at points x = a  close to the point  x = xo.   If this error is represented by Rn(a), then it can be shown that this error term can have one of the following forms:
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In the first two expressions the value of “(” is between “a” and “xo”.   The first form is called Lagrange’s formula, the second is called Cauchy’s formula, and the last is called the Integral formula.

If it can be shown that any one of these formulae approach zero as “n” approaches infinity, then it is possible to replace the Taylor Polynomial by the Taylor Series and look for the radius of convergence and the interval of convergence by means of the ratio test.

When it is possible to express the function  f (x)  by a Taylor Series in powers of  (x  xo), we write 
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The series converges absolutely for  
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.   The entire set of values for which the Taylor Series converges is called the interval of convergence  I.   This means that the sum of the series at any point in the interval of convergence is the value of the function at that point.

If in the Taylor Series the value of  xo  is set to zero, then it is called a Maclaurin Series.

NOTE: 
A number of examples will be considered in class.

_1024916023.unknown

_1024918612.unknown

_1024920901.unknown

_1024921699.unknown

_1025071295.unknown

_1025071359.unknown

_1025071410.unknown

_1025071618.unknown

_1025071314.unknown

_1024922245.unknown

_1024922571.unknown

_1024923170.unknown

_1024922538.unknown

_1024922451.unknown

_1024921870.unknown

_1024921064.unknown

_1024921270.unknown

_1024921511.unknown

_1024921615.unknown

_1024921492.unknown

_1024921065.unknown

_1024920942.unknown

_1024919116.unknown

_1024920564.unknown

_1024920792.unknown

_1024920802.unknown

_1024920782.unknown

_1024919282.unknown

_1024920167.unknown

_1024920287.unknown

_1024919421.unknown

_1024919826.unknown

_1024919483.unknown

_1024919402.unknown

_1024919217.unknown

_1024919274.unknown

_1024919153.unknown

_1024918916.unknown

_1024919066.unknown

_1024919100.unknown

_1024919065.unknown

_1024918694.unknown

_1024918782.unknown

_1024918628.unknown

_1024916238.unknown

_1024916386.unknown

_1024918598.unknown

_1024918466.unknown

_1024918584.unknown

_1024916278.unknown

_1024916340.unknown

_1024916273.unknown

_1024916082.unknown

_1024916166.unknown

_1024916193.unknown

_1024916121.unknown

_1024916065.unknown

_1024914831.unknown

_1024915648.unknown

_1024915830.unknown

_1024916013.unknown

_1024915877.unknown

_1024915979.unknown

_1024915805.unknown

_1024915824.unknown

_1024915653.unknown

_1024915109.unknown

_1024915287.unknown

_1024915642.unknown

_1024915220.unknown

_1024915008.unknown

_1024915103.unknown

_1024914891.unknown

_1024913997.unknown

_1024914690.unknown

_1024914746.unknown

_1024914778.unknown

_1024914730.unknown

_1024914055.unknown

_1024914207.unknown

_1024914025.unknown

_1024913797.unknown

_1024913928.unknown

_1024913936.unknown

_1024913829.unknown

_1024913226.unknown

_1024913526.unknown

_1024913208.unknown

