3.1 The Cofactor Expansion for Determinants

Every square matrix has a determinant. All matrices with zero determinant are singular. All matrices with non-zero determinant are invertible.

The determinant of a (1×1) matrix A = [a] is just det A = a.

From section 2.3, the determinant of a (2×2) matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is $\det A = ad - bc$.

The determinants of all higher-order matrices can be expressed in terms of lower-order determinants. Details are on pages 105 - 108 of the textbook.

Example 3.1.1

Find the determinant of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
.

Expanding along the top row and noting alternating signs $\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$,

$$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = +1 \times \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \times \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \times \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}$$

$$= 1(45-48) - 2(36-42) + 3(32-35) = -3+12-9 = 0$$

Therefore this matrix A is singular (has no inverse).

Definitions:

Let the $((n-1)\times(n-1))$ submatrix A_{ij} be the matrix obtained by the deletion of row i and column j of the $(n\times n)$ matrix A. [det A_{ij} is sometimes known as the (i,j)-minor of A.]

The (*i,j*)-cofactor of an
$$(n \times n)$$
 matrix A is $c_{ij}(A) = (-1)^{i+j} \det(A_{ij})$

In Example 3.1.1,

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \implies c_{11} = (-1)^{1+1} \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = +(5 \times 9 - 6 \times 8) = 45 - 48 = -3,$$

$$c_{12} = (-1)^{1+2} \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = -(4 \times 9 - 6 \times 7) = -(36 - 42) = +6,$$

$$c_{13} = (-1)^{1+3} \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = +(4 \times 8 - 5 \times 7) = -(32 - 35) = +3,$$

$$\vdots$$

$$c_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = -(1 \times 6 - 3 \times 4) = -(6 - 12) = +6, \text{ etc.}$$

For the $(n \times n)$ matrix A, the cofactor expansion of det A along row i is then

$$\det A = a_{i1}c_{i1}(A) + a_{i2}c_{i2}(A) + \dots + a_{in}c_{in}(A) = \sum_{j=1}^{n} a_{ij}c_{ij}(A)$$

Any row can be chosen for the expansion, as can any column j:

$$\det A = a_{1j}c_{1j}(A) + a_{2j}c_{2j}(A) + \dots + a_{nj}c_{nj}(A) = \sum_{i=1}^{n} a_{ij}c_{ij}(A)$$

Choosing to expand down column 2 in Example 3.1.1,

$$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 2 \times (-1)^{1+2} \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 5 \times (-1)^{2+2} \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} + 8 \times (-1)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix}$$
$$= -2(36 - 42) + 5(9 - 21) - 8(6 - 12) = 12 - 60 + 48 = 0$$

Choose the row or column that has the most zero entries. Where an entry is zero, the cofactor need not be evaluated.

Example 3.1.2

Find the determinant of
$$B = \begin{bmatrix} 1 & 9 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 7 & 18 & 1 & 5 \\ 1 & -4 & 0 & 2 \end{bmatrix}$$
.

Row 2 and column 3 share the greatest number of zeros. Column 3 looks easier (its non-zero entry is a '1').

Expand the (4×4) determinant along column 3:

$$\det\begin{bmatrix} 1 & 9 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 7 & 18 & 1 & 5 \\ 1 & -4 & 0 & 2 \end{bmatrix} = 0 + 0 + 1 \times (-1)^{3+3} \begin{vmatrix} 1 & 9 & 1 \\ 0 & 2 & 0 \\ 1 & -4 & 2 \end{vmatrix} + 0$$

Expand the new (3×3) determinant along row 2:

$$\begin{vmatrix} 1 & 9 & 1 \\ 0 & 2 & 0 \\ 1 & -4 & 2 \end{vmatrix} = 0 + 2 \times (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + 0 = 2(2-1) = 4$$

If a (4×4) matrix has no zero entries, then the cofactor expansion requires the evaluation of four (3×3) determinants, each of which involves the evaluation of three (2×2) determinants, for a total of twelve (2×2) determinants.

As n increases, the number of (2×2) determinants that need to be evaluated in the cofactor expansion for an $(n\times n)$ matrix with no zero entries increases very rapidly:

- $n + (2\times 2)$ determinants
- 2 1
- 3 3
- 4 12
- 5 60
- 6 360

The determinant of a **triangular square matrix** is just the product of the entries on the leading diagonal.

Proof for all upper triangular (4×4) matrices:

Find the determinant of
$$U = \begin{bmatrix} a & u & v & w \\ 0 & b & x & y \\ 0 & 0 & c & z \\ 0 & 0 & 0 & d \end{bmatrix}$$
.

Expand down column 1 repeatedly:

$$\det U = a(-1)^{1+1} \begin{vmatrix} b & x & y \\ 0 & c & z \\ 0 & 0 & d \end{vmatrix} + 0 + 0 + 0 = ab(-1)^{1+1} \begin{vmatrix} c & z \\ 0 & d \end{vmatrix} + 0 + 0$$
$$= ab(cd - 0) = abcd$$

For a square matrix A, if any of the following is true, then $\det A = 0$:

A row or column is all zeros. [This is obvious upon expanding along the zero row/col.] Two rows are identical.

Two columns are identical.

One row is a multiple of another row.

One column is a multiple of another column.

Example 3.1.3

Evaluate det
$$C = \begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ -4 & 2 & 0 & 0 & 0 \\ 67 & e & 3 & 0 & 0 \\ 101 & 1111 & -47 & 2 & 0 \\ \pi & -23 & 601 & -\sqrt{2} & 1 \end{vmatrix}$$

Matrix C is lower triangular \Rightarrow det $C = 1 \times 2 \times 3 \times 2 \times 1 = 12$

Example 3.1.4

Evaluate det
$$D = \begin{vmatrix} 1 & -1 & 1 & 3 \\ -4 & 2 & -4 & 2 \\ 7 & 2 & 7 & 1 \\ 11 & 3 & 11 & 27 \end{vmatrix}$$

Columns 1 and 3 of matrix D are identical \Rightarrow det D = 0

Effect of row operations on the determinant

- I (interchange two rows) changes the sign of the determinant
- II (multiply a row by $k \neq 0$) multiplies the determinant by k.
- III (add a multiple of one row to another row) does not change the determinant

Also $\det A^{\mathrm{T}} = \det A$ for all square matrices A.

Therefore *column* operations have the same effect on the determinant as row operations.

Example 3.1.1 (again)

Find the determinant of $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.

Use elementary row operations to carry matrix A towards row echelon form:

$$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} \xrightarrow{R_2 - 4R_1} \det A = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{vmatrix}$$

Clearly $R_3 = 2R_2 \implies \det A = 0$.

One further row operation $(R_3 - 2R_2)$ will carry row 3 to all zeros.

Example 3.1.5 (Textbook, page 114, exercises 3.1, question 1(0))

Compute
$$\det A = \begin{vmatrix} 1 & -1 & 5 & 5 \\ 3 & 1 & 2 & 4 \\ -1 & -3 & 8 & 0 \\ 1 & 1 & 2 & -1 \end{vmatrix}$$
.

Use elementary row operations to carry the matrix to upper triangular form:

$$\begin{vmatrix} 1 & -1 & 5 & 5 \\ 3 & 1 & 2 & 4 \\ -1 & -3 & 8 & 0 \\ 1 & 1 & 2 & -1 \end{vmatrix} \xrightarrow{R_2 - 3R_1} \begin{vmatrix} R_2 - 3R_1 \\ R_3 + R_1 \end{vmatrix} \begin{vmatrix} 1 & -1 & 5 & 5 \\ 0 & 4 & -13 & -11 \\ 0 & -4 & 13 & 5 \\ 0 & 2 & -3 & -6 \end{vmatrix}$$

$$\Rightarrow \det A = -1 \times 4 \times \frac{7}{2} \times (-6) = +84$$

Example 3.1.6 (Textbook, page 114, exercises 3.1, question 6(a))

Compute
$$\det A = \begin{vmatrix} a & b & c \\ a+1 & b+1 & c+1 \\ a-1 & b-1 & c-1 \end{vmatrix}$$
.

Note that the sum of rows 2 and 3 is twice row 1, which suggests a zero determinant.

$$\begin{vmatrix} a & b & c \\ a+1 & b+1 & c+1 \\ a-1 & b-1 & c-1 \end{vmatrix} \xrightarrow{R_2 + R_3} \begin{vmatrix} a & b & c \\ 2a & 2b & 2c \\ a-1 & b-1 & c-1 \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ a & b & c \\ a-1 & b-1 & c-1 \end{vmatrix} = 0$$

because rows 1 and 2 are now identical.

Example 3.1.7 (Textbook, page 114, exercises 3.1, question 7(a))

If
$$\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix} = -1$$
, compute $\begin{vmatrix} -x & -y & -z \\ 3p+a & 3q+b & 3r+c \\ 2p & 2q & 2r \end{vmatrix}$.

$$\begin{vmatrix} -x & -y & -z \\ 3p+a & 3q+b & 3r+c \\ 2p & 2q & 2r \end{vmatrix} = (-1) \times 2 \begin{vmatrix} x & y & z \\ 3p+a & 3q+b & 3r+c \\ p & q & r \end{vmatrix}$$

$$\begin{array}{c|cccc} \hline \\ \hline \\ R_2 \leftrightarrow R_3 \end{array} \rightarrow \begin{array}{c|cccc} -2 & a & b & c \\ p & q & r \\ x & y & z \end{array} = -2 \times -1 = 2$$

Example 3.1.8 (Textbook, page 115, exercises 3.1, question 16(c))

Find the value(s) of
$$x$$
 for which matrix $A = \begin{bmatrix} 1 & x & x^2 & x^3 \\ x & x^2 & x^3 & 1 \\ x^2 & x^3 & 1 & x \\ x^3 & 1 & x & x^2 \end{bmatrix}$ is singular.

Use elementary row operations to carry the matrix to upper triangular form:

$$\det A = \begin{vmatrix} 1 & x & x^2 & x^3 \\ x & x^2 & x^3 & 1 \\ x^2 & x^3 & 1 & x \\ x^3 & 1 & x & x^2 \end{vmatrix} \xrightarrow{R_2 - xR_1} \begin{vmatrix} 1 & x & x^2 & x^3 \\ 0 & 0 & 0 & 1 - x^4 \\ R_3 - x^2R_1 & 0 & 0 & 1 - x^4 \\ R_4 - x^3R_1 & 0 & 1 - x^4 & x(1 - x^4) \\ 0 & 1 - x^4 & x(1 - x^4) & x^2(1 - x^4) \end{vmatrix}$$

Matrix A is singular if and only if $-(1-x^4)^3 = 0$.

The only real values of x for which this happens are $x = \pm 1$.

Block Matrices

If A and B are square matrices, then for all matrices X, Y of the appropriate dimensions, $\det \begin{bmatrix} A & X \\ O & B \end{bmatrix} = \det \begin{bmatrix} A & O \\ Y & B \end{bmatrix} = \det A \det B$.

Example 3.1.9 (Textbook, page 115, exercises 3.1, question 10(a))

Compute
$$\det M = \begin{vmatrix} 1 & -1 & 2 & 0 & -2 \\ 0 & 1 & 0 & 4 & 1 \\ 1 & 1 & 5 & 0 & 0 \\ 0 & 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{vmatrix}$$
.

$$M = \begin{bmatrix} A & X \\ O & B \end{bmatrix}$$
, where $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & 5 \end{bmatrix}$, $X = \begin{bmatrix} 0 & -2 \\ 4 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$

 $\Rightarrow \det M = \det A \det B$

$$\det A = \begin{vmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & 5 \end{vmatrix} = 0 + (-1)^{2+2} \begin{vmatrix} 1 & 2 \\ 1 & 5 \end{vmatrix} + 0 = +(5-2) = 3$$

$$\det B = 3 - (-1) = 4$$

$$\Rightarrow$$
 det $M = 3 \times 4 = 12$

3.2 Determinants and Inverse Matrices

For any set of square matrices of the same dimensions, the determinant of a product is the product of the determinants:

$$det(AB) = (det A) (det B)$$
, $det(ABC) = (det A) (det B) (det C)$, etc.

It then follows that

$$\det(A^{k}) = (\det A)^{k}$$

$$AA^{-1} = I \implies \det(AA^{-1}) = 1 \implies \det(A^{-1}) = 1 \implies \det(A^{-1}) = \frac{1}{\det A}$$

The **adjugate** (or **adjoint**) of any square matrix A is the transpose of the matrix of cofactors of A:

$$\operatorname{adj}(A) = \left[c_{ij}(A)\right]^{\mathsf{T}} \qquad [\text{The 2} \times 2 \text{ case is adj} \left[\begin{array}{c} a & b \\ c & d \end{array}\right] = \left[\begin{array}{c} d & -b \\ -c & a \end{array}\right].]$$

Example 3.2.1

Compute adj (A), A adj (A) and det (A) for
$$A = \begin{bmatrix} 1 & 9 & 1 \\ 0 & 2 & 0 \\ 1 & -4 & 2 \end{bmatrix}$$
.

The matrix of cofactors is

$$C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} = \begin{bmatrix} + \begin{vmatrix} 2 & 0 \\ -4 & 2 \end{vmatrix} & - \begin{vmatrix} 0 & 0 \\ 1 & 2 \end{vmatrix} & + \begin{vmatrix} 0 & 2 \\ 1 & -4 \end{vmatrix} \\ - \begin{vmatrix} 9 & 1 \\ -4 & 2 \end{vmatrix} & + \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} & - \begin{vmatrix} 1 & 9 \\ 1 & -4 \end{vmatrix} \\ + \begin{vmatrix} 9 & 1 \\ 2 & 0 \end{vmatrix} & - \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} & + \begin{vmatrix} 1 & 9 \\ 0 & 2 \end{vmatrix} \end{bmatrix} = \begin{bmatrix} 4 & 0 & -2 \\ -22 & 1 & 13 \\ -2 & 0 & 2 \end{bmatrix}$$

$$\operatorname{adj} A = C^{\mathrm{T}} = \begin{bmatrix} 4 & -22 & -2 \\ 0 & 1 & 0 \\ -2 & 13 & 2 \end{bmatrix}$$

Example 3.2.1 (continued)

$$A \operatorname{adj} A = \begin{bmatrix} 1 & 9 & 1 \\ 0 & 2 & 0 \\ 1 & -4 & 2 \end{bmatrix} \begin{bmatrix} 4 & -22 & -2 \\ 0 & 1 & 0 \\ -2 & 13 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = 2I$$

Expand along the middle row to find det *A*: det $A = 0 + 2 \times c_{22} + 0 = 2$

Note that
$$A \operatorname{adj}(A) = (\det(A)) I \implies A^{-1} = \frac{\operatorname{adj} A}{\det A}$$

The inverse of any non-singular matrix A is

$$A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)}$$

However, this is often a very inefficient way to compute the inverse of a matrix. Gaussian elimination of [A | I] to $[I | A^{-1}]$ is usually much faster.

Example 3.2.2 (Textbook, page 127, exercises 3.2, question 2(e))

Use determinants to find which real value(s) of c make this matrix invertible:

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & c \\ 2 & c & 1 \end{bmatrix}$$

$$A = \begin{vmatrix} 1 & 2 & -1 \\ 0 & -1 & c \\ 2 & c & 1 \end{vmatrix} = 0 + (-1) \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} - c \begin{vmatrix} 1 & 2 \\ 2 & c \end{vmatrix}$$
$$= -(1+2) - c(c-4) = -(c^2 - 4c + 3) = -(c-1)(c-3)$$
$$\det A = 0 \implies c = 1 \text{ or } c = 3$$

Therefore the matrix is invertible for all real values of c except c = 1 or c = 3.

Example 3.2.3 (Textbook, page 127, exercises 3.2, question 16)

Show that no 3×3 matrix A exists such that $A^2 + I = O$. Find a 2×2 matrix A with this property.

$$A^{2} + I = O$$
 \Rightarrow $A^{2} = -I$ \Rightarrow $\det(A^{2}) = \det(-I)$
 $\Rightarrow (\det A)^{2} = \det(-I)$

But -I is an $(n \times n)$ matrix whose only non-zero entries are the n entries of -1 down the main diagonal

$$\Rightarrow \det(-I) = (-1)^n = \begin{cases} +1 & (\text{if } n \text{ is even}) \\ -1 & (\text{if } n \text{ is odd}) \end{cases}$$

For a (3×3) matrix we therefore have $(\det A)^2 = -1$, which has no real solution.

For a (2×2) matrix we have $(\det A)^2 = +1$ \Rightarrow $\det A = \pm 1$

Solving
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \implies \begin{bmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\Rightarrow d = -a \text{ and } bc = -(a^2 + 1)$$
.

The set of all (2×2) matrices satisfying $A^2 + I = O$ is

$$A = \begin{bmatrix} a & b \\ \frac{a^2 + 1}{-b} & -a \end{bmatrix} \quad (a \in \mathbb{R}, \ b \in \mathbb{R}, \ b \neq 0)$$

One member of this set is
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
.

Cramer's Rule

For a linear system of n equations in n unknowns, if the coefficient matrix A is invertible, then define the matrices A_k by replacing the ith column of A by B and the unique solution of the linear system AX = B is $X = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$, where

$$x_i = \frac{\det A_k}{\det A}$$

Example 3.2.4 (Textbook, page 127, exercises 3.2, question 8(c) modified)

Find the value of x when

$$5x + y - z = -7$$
$$2x - y - 2z = 6$$
$$3x + 2z = -7$$

$$A = \begin{bmatrix} 5 & 1 & -1 \\ 2 & -1 & -2 \\ 3 & 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -7 \\ 6 \\ -7 \end{bmatrix} \quad \Rightarrow \quad A_1 = \begin{bmatrix} -7 & 1 & -1 \\ 6 & -1 & -2 \\ -7 & 0 & 2 \end{bmatrix}$$

Expanding down the middle column,

$$\det A_1 = \begin{vmatrix} -7 & 1 & -1 \\ 6 & -1 & -2 \\ -7 & 0 & 2 \end{vmatrix} = 1 \times (-1)^{1+2} \begin{vmatrix} 6 & -2 \\ -7 & 2 \end{vmatrix} + (-1) \times (-1)^{2+2} \begin{vmatrix} -7 & -1 \\ -7 & 2 \end{vmatrix} + 0$$

$$= -(12-14) - (-14-7) = +2 + 21 = 23$$

$$\det A = \begin{vmatrix} 5 & 1 & -1 \\ 2 & -1 & -2 \\ 3 & 0 & 2 \end{vmatrix} = 1 \times (-1)^{1+2} \begin{vmatrix} 2 & -2 \\ 3 & 2 \end{vmatrix} + (-1) \times (-1)^{2+2} \begin{vmatrix} 5 & -1 \\ 3 & 2 \end{vmatrix} + 0$$
$$= -(4+6) - (10+3) = -10 - 13 = -23$$

$$x = \frac{\det A_1}{\det A} = \frac{23}{-23} = -1$$

Therefore x = -1.

Cramer's rule is computationally a very inefficient method for solving linear systems.

Example 3.2.5 (Textbook, page 127, exercises 3.2, question 8(a))

Use Cramer's Rule to solve the system

$$2x + y = 1$$
$$3x + 7y = -2$$

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 7 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad \Rightarrow \quad A_1 = \begin{bmatrix} 1 & 1 \\ -2 & 7 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix}$$

$$\Rightarrow$$
 det $A = 14-3 = 11$, det $A_1 = 7+2 = 9$, det $A_2 = -4-3 = -7$

$$\Rightarrow x = \frac{\det A_1}{\det A} = \frac{9}{11} \text{ and } y = \frac{\det A_2}{\det A} = \frac{-7}{11}$$

Check 1:

$$A^{-1} = \frac{1}{14 - 3} \begin{bmatrix} 7 & -1 \\ -3 & 2 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 7 & -1 \\ -3 & 2 \end{bmatrix}$$

$$\Rightarrow X = A^{-1}B = \frac{1}{11} \begin{bmatrix} 7 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 9 \\ -7 \end{bmatrix}$$

Check 2:

$$2\left(\frac{9}{11}\right) + \left(\frac{-7}{11}\right) = \frac{11}{11} = 1$$

$$3\left(\frac{9}{11}\right) + 7\left(\frac{-7}{11}\right) = \frac{27 - 49}{11} = \frac{-22}{11} = -2$$

3.3 – Eigenvalues and Eigenvectors

 λ is an **eigenvalue** of an $(n \times n)$ matrix A if, for some column vector $X \neq O$, $AX = \lambda X$

The non-trivial column vector X is an **eigenvector** of A for that eigenvalue, (as is any non-zero multiple of that column vector).

Example 3.3.1

$$AX = \begin{bmatrix} 1 & 1 \\ -5 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 6 \\ 30 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 5 \end{bmatrix} = 6X$$

 $X = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ is therefore an eigenvector of A for eigenvalue $\lambda = 6$ (the 6-eigenvalue).

Example 3.3.2

A mirror is in the *x-z* plane in \mathbb{R}^3 space.

The vector from the origin to a general point (x, y, z) is $(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$.

The reflection of this vector in the mirror is the vector $(x\mathbf{i} - y\mathbf{j} + z\mathbf{k})$.

The operation of reflection may be represented by the matrix

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ because } RX = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ -y \\ z \end{bmatrix}.$$

Any vector in the plane of the mirror, $(x\mathbf{i} + 0\mathbf{j} + z\mathbf{k})$, does not move upon reflection.

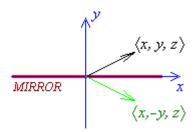
Therefore $X = \begin{bmatrix} x & 0 & z \end{bmatrix}^T$ is an eigenvector of R for eigenvalue $\lambda = 1$ for any choices of x and z that are not both zero. Because $\begin{bmatrix} x & 0 & z \end{bmatrix}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T x + \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T z$, the basic set of 1-eigenvectors is $\{ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T \}$.

The general vector from the origin, proceeding out at right angles to the plane of the mirror along the y axis, is $(0\mathbf{i} + y\mathbf{j} + 0\mathbf{k})$.

Its reflection in the mirror is the vector $(0\mathbf{i} - y\mathbf{j} + 0\mathbf{k})$.

Therefore $X = \begin{bmatrix} 0 & y & 0 \end{bmatrix}^T$ is an eigenvector of R for eigenvalue $\lambda = -1$ for any non-zero choice of y. The basic set of -1-eigenvectors is $\{ \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T \}$.

No other vectors are parallel to their own reflections in the mirror.



Characteristic Polynomial

If a non-zero column vector X is an eigenvector of $(n \times n)$ matrix A for eigenvalue λ , then

$$AX = \lambda X$$
 \Rightarrow $AX = \lambda IX$ \Rightarrow $\lambda IX - AX = O$ \Rightarrow $(\lambda I - A)X = O$

But this square homogeneous linear system cannot have a non-trivial solution unless $(\lambda I - A)$ is singular $\Rightarrow \det(\lambda I - A) = 0$.

The characteristic polynomial of any $(n \times n)$ matrix A is $c_A(\lambda) = \det(\lambda I - A)$, which is a polynomial of degree n in λ . The eigenvalues of A are the n solutions of $c_A(\lambda) = \det(\lambda I - A) = 0$.

The λ -eigenvectors of A are the non-trivial solutions to the homogeneous linear system $(\lambda I - A)X = O$.

Example 3.3.1 (continued)

Find all eigenvalues and their eigenvectors of $A = \begin{bmatrix} 1 & 1 \\ -5 & 7 \end{bmatrix}$.

$$\det(\lambda I - A) = \det\left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ -5 & 7 \end{bmatrix}\right) = \begin{vmatrix} \lambda - 1 & -1 \\ 5 & \lambda - 7 \end{vmatrix} = (\lambda^2 - 8\lambda + 7) + 5$$
$$= \lambda^2 - 8\lambda + 12 = (\lambda - 2)(\lambda - 6)$$
$$\det(\lambda I - A) = 0 \implies \lambda = 2 \text{ or } \lambda = 6$$

$$\lambda_1 = 2$$
:

Solving $(2I - A)X_1 = O$:

$$(2I - A)X = \begin{bmatrix} 2 - 1 & -1 \\ 5 & 2 - 7 \end{bmatrix} X = \begin{bmatrix} 1 & -1 \\ 5 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow x - y = 0 \qquad \Rightarrow y = x$$

Therefore the 2-eigenvectors of A are any non-zero multiples of $X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Example 3.3.1 (continued)

 $\lambda_2 = 6$ (which is the case considered earlier):

Solving $(6I - A)X_2 = O$:

$$(6I - A)X = \begin{bmatrix} 6-1 & -1 \\ 5 & 6-7 \end{bmatrix} X = \begin{bmatrix} 5 & -1 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow 5x - y = 0 \Rightarrow y = 5x$$

Therefore the 6-eigenvectors of A are any non-zero multiples of $X_2 = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$.

Example 3.3.3

Find all eigenvalues and their eigenvectors of $A = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix}$.

$$\det(\lambda I - A) = \det\left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix}\right) = \begin{bmatrix} \lambda - 2 & -1 \\ 0 & \lambda - 4 \end{bmatrix} = (\lambda - 2)(\lambda - 4)$$

$$det(\lambda I - A) = 0$$
 $\Rightarrow \lambda = 2 \text{ or } \lambda = 4$

 $\lambda_1 = 2$:

Solving (2I - A)X = O:

$$(2I - A)X = \begin{bmatrix} 2 - 2 & -1 \\ 0 & 2 - 4 \end{bmatrix} X = \begin{bmatrix} 0 & -1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow y = 0, \quad (x \text{ arbitrary})$$

Therefore the 2-eigenvectors of A are any non-zero multiples of $X_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

 $\lambda_2 = 4$:

Solving $(4I - A)X_2 = O$:

$$(4I - A)X = \begin{bmatrix} 4 - 2 & -1 \\ 0 & 4 - 4 \end{bmatrix}X = \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow 2x - y = 0 \Rightarrow y = 2x$$

Therefore the 4-eigenvectors of A are any non-zero multiples of $X_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Eigenvalues and eigenvectors do not have to be real.

The rotation matrix in
$$\mathbb{R}^2$$
, $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, has eigenvalues $\lambda = \cos \theta \pm j \sin \theta = e^{\pm j\theta}$, (where $j = \sqrt{-1}$).

An **upper triangular** matrix has all its non-zero entries on or above the main diagonal.

$$\begin{bmatrix} 1 & 5 & 3 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 is upper triangular.

A lower triangular matrix has all its non-zero entries on or below the main diagonal.

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & -2 & -4 \end{bmatrix}$$
 is lower triangular.

The eigenvalues of a triangular matrix are just the entries on the main diagonal.

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ 0 & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda - a_{nn} \end{vmatrix} = (\lambda - a_{11})(\lambda - a_{22})...(\lambda - a_{nn})$$

$$\det(\lambda I - A) = 0 \implies \lambda = a_{11}, a_{22}, ..., a_{nn}$$

The matrix in example 3.3.3 is upper triangular. We can say immediately that its eigenvalues are 2 and 4 (the entries on the main diagonal).

Example 3.3.4

Find all eigenvalues and their eigenvectors of $A = \begin{bmatrix} 3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5 \end{bmatrix}$.

$$c_{A}(\lambda) = \det(\lambda I - A) = \begin{vmatrix} \lambda - 3 & -1 & -1 \\ 4 & \lambda + 2 & 5 \\ -2 & -2 & \lambda - 5 \end{vmatrix}$$

Expand this determinant along the top row:

$$c_{A}(\lambda) = (\lambda - 3) \begin{vmatrix} \lambda + 2 & 5 \\ -2 & \lambda - 5 \end{vmatrix} - (-1) \begin{vmatrix} 4 & 5 \\ -2 & \lambda - 5 \end{vmatrix} + (-1) \begin{vmatrix} 4 & \lambda + 2 \\ -2 & -2 \end{vmatrix}$$

$$= (\lambda - 3) (\lambda^{2} - 3\lambda - 10 + 10) + (4\lambda - 20 + 10) - (-8 + 2\lambda + 4)$$

$$= (\lambda^{2} - 6\lambda + 9)\lambda + 2\lambda - 6 = \lambda(\lambda - 3)^{2} + 2(\lambda - 3)$$

$$= (\lambda - 3) (\lambda^{2} - 3\lambda + 2) = (\lambda - 1)(\lambda - 2)(\lambda - 3)$$

$$c_{A}(\lambda) = 0 \implies \lambda = 1 \text{ or } \lambda = 2 \text{ or } \lambda = 3$$

For $\lambda = 1$:

Solving (1I - A)X = O:

$$\begin{bmatrix} -2 & -1 & -1 \\ 4 & 3 & 5 \\ -2 & -2 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Carry the coefficient matrix to reduced row-echelon form

$$\begin{array}{c} R_1 - \frac{1}{2}R_2 \\ \hline R_3 + R_2 \end{array} \longrightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow$$
 $x = z$ and $y = -3z$

The 1-eigenvector is therefore any non-zero multiple of $X_1 = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$

Example 3.3.4 (continued)

For $\lambda = 2$:

Solving (2I - A)X = O:

$$\begin{bmatrix} -1 & -1 & -1 \\ 4 & 4 & 5 \\ -2 & -2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Carry the coefficient matrix to reduced row-echelon form:

$$\begin{array}{c|c} R_1 - R_2 \\ \hline R_3 + R_2 \end{array} \longrightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

 \Rightarrow x = -y and z = 0.

The 2-eigenvector is therefore any non-zero multiple of $X_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$

For $\lambda = 3$:

Solving (3I - A)X = O:

$$\begin{bmatrix} 0 & -1 & -1 \\ 4 & 5 & 5 \\ -2 & -2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Carry the coefficient matrix to reduced row-echelon form:

$$\frac{R_1 \leftrightarrow R_3}{\text{then}} \longrightarrow \begin{bmatrix} 1 & 1 & 1 \\ 4 & 5 & 5 \\ 0 & -1 & -1 \end{bmatrix} \xrightarrow{R_2 - 4R_1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$$

$$\begin{array}{c} R_1 - R_2 \\ \hline R_3 + R_2 \end{array} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

 \Rightarrow x = 0 and y = -z.

The 3-eigenvector is therefore any non-zero multiple of $X_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

The **multiplicity** of an eigenvalue is the number of times that distinct eigenvalue is repeated in the solution of the characteristic polynomial.

In Example 3.3.2, the three eigenvalues of R are -1, +1 and +1. $\lambda = -1$ has multiplicity 1. $\lambda = +1$ has multiplicity 2. In the other examples, all eigenvalues have multiplicity 1.

Each distinct eigenvalue has at least one basic eigenvector (and at most m, where m is the multiplicity of the eigenvalue).

If and only if an $(n \times n)$ matrix has a total of n basic eigenvectors, then it can be diagonalized.

Diagonalization

A square matrix that is both upper and lower triangular is **diagonal**.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -4 \end{bmatrix} = diag(1, 3, -4) \text{ is diagonal.}$$

Diagonal matrices have nice properties.

If
$$D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$
 and $E = \operatorname{diag}(\mu_1, \mu_2, \dots, \mu_n)$ then $D + E = \operatorname{diag}(\lambda_1 + \mu_1, \lambda_2 + \mu_2, \dots, \lambda_n + \mu_n)$ and $DE = ED = \operatorname{diag}(\lambda_1 \mu_1, \lambda_2 \mu_2, \dots, \lambda_n \mu_n)$

A square matrix A is diagonalizable iff an invertible matrix P exists such that $D = P^{-1}AP$ is a diagonal matrix.

Let
$$X_1, X_2, ..., X_n$$
 denote the columns of P , then we can write $P = \begin{bmatrix} X_1 & X_2 & ... & X_n \end{bmatrix}$
 $D = P^{-1}AP \implies PD = PP^{-1}AP = IAP = AP$
 $\Rightarrow \begin{bmatrix} X_1 & X_2 & ... & X_n \end{bmatrix} \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n) = AP$
 $\Rightarrow \begin{bmatrix} \lambda_1 X_1 & \lambda_2 X_2 & ... & \lambda_n X_n \end{bmatrix} = A\begin{bmatrix} X_1 & X_2 & ... & X_n \end{bmatrix}$
 $\Rightarrow \lambda_i X_i = AX_i \quad (i = 1, 2, ..., n)$

Therefore the main diagonal entries of D are the eigenvalues of A and each column of P is an eigenvector for the corresponding eigenvalue.

Example 3.3.5

matrix.

Find the matrix P that diagonalizes $A = \begin{bmatrix} 3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5 \end{bmatrix}$ and write down the diagonal

From Example 3.3.4, the eigenvalues and corresponding set of basic eigenvectors of A are:

$$\lambda_1 = 1$$
, $X_1 = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$, $\lambda_2 = 2$, $X_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\lambda_3 = 3$, $X_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$

$$\Rightarrow P = \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

and

$$P^{-1}AP = D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

To verify this result, let us find P^{-1} by Gaussian elimination, then $P^{-1}AP$.

$$\begin{bmatrix} P \mid I \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ -3 & -1 & 1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 + 3R_1} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 3 & 1 & 0 \\ 0 & -1 & -1 & -1 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{c|ccccc}
R_1 - R_3 \\
\hline
R_2 + R_3 \\
\hline
\text{then} \\
R_3 \times (-2)
\end{array}$$

$$\begin{bmatrix}
1 & 0 & 0 & -1 & -1 & -1 \\
0 & 1 & 0 & 2 & 1 & 1 \\
0 & 0 & 1 & -1 & -1 & -2
\end{bmatrix} = \begin{bmatrix} I \mid P^{-1} \end{bmatrix}$$

Example 3.3.5 (continued)

and it is straightforward to verify that

$$P^{-1}P = \begin{bmatrix} -1 & -1 & -1 \\ 2 & 1 & 1 \\ -1 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

$$AP = \begin{bmatrix} 3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ -3 & -2 & 3 \\ 1 & 0 & -3 \end{bmatrix}$$

$$\Rightarrow P^{-1}AP = \begin{bmatrix} -1 & -1 & -1 \\ 2 & 1 & 1 \\ -1 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ -3 & -2 & 3 \\ 1 & 0 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = D$$

Interchanging the order in which the eigenvalues are written in D also interchanges the corresponding columns in the diagonalizing matrix P.

$$D = P^{-1}AP \implies PDP^{-1} = PP^{-1}APP^{-1} = IAI = A$$

$$\Rightarrow A^{k} = (PDP^{-1})^{k} = \underbrace{(PDP^{-1})(PDP^{-1})...(PDP^{-1})}_{k \text{ factors}} = P\underbrace{DIDID...ID}_{k \text{ factors}} P^{-1} = PD^{k}P^{-1}$$

It then follows that the eigenvalues of A^k are the k^{th} powers of the eigenvalues of A. To find A^k quickly for high values of k, find the eigenvalues and eigenvectors, hence matrices D, P and P^{-1} , then $A^k = PD^kP^{-1}$.

Example 3.3.6

Find
$$A^5$$
, where $A = \begin{bmatrix} 3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5 \end{bmatrix}$.

From Examples 3.3.4 and 3.3.5,

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \text{ and } P^{-1} = \begin{bmatrix} -1 & -1 & -1 \\ 2 & 1 & 1 \\ -1 & -1 & -2 \end{bmatrix}$$

$$\Rightarrow A^{5} = PD^{5}P^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1^{5} & 0 & 0 \\ 0 & 2^{5} & 0 \\ 0 & 0 & 3^{5} \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ 2 & 1 & 1 \\ -1 & -1 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ 64 & 32 & 32 \\ -243 & -243 & -486 \end{bmatrix}$$

$$\Rightarrow A^5 = \begin{bmatrix} 63 & 31 & 31 \\ -304 & -272 & -515 \\ 242 & 242 & 485 \end{bmatrix}$$

This can be verified by the tedious process of calculating

$$A^{2} = AA = \begin{bmatrix} 7 & 3 & 3 \\ -14 & -10 & -19 \\ 8 & 8 & 17 \end{bmatrix}, \quad A^{3} = A^{2}A = \begin{bmatrix} 15 & 7 & 7 \\ -40 & -32 & -59 \\ 26 & 26 & 53 \end{bmatrix}$$
 and finally

$$A^5 = A^3 A^2 = \begin{bmatrix} 63 & 31 & 31 \\ -304 & -272 & -515 \\ 242 & 242 & 485 \end{bmatrix}$$

Example 3.3.7 (Textbook, exercises 3.3, page 141, question 3)

Show that A has $\lambda = 0$ as an eigenvalue if and only if A is not invertible.

The characteristic equation for the eigenvalues is $\det(\lambda I - A) = 0$ which becomes $(\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n) = 0$.

If any one or more of the eigenvalues is zero, then $\det(0I-A) = -\det A = 0$ $\Rightarrow A$ is singular.

If none of the eigenvalues is zero, then $\lambda = 0$ cannot be a solution to det $(\lambda I - A) = 0$ \Rightarrow det $A \neq 0$ \Rightarrow A is invertible. The contrapositive of this statement follows:

A is not invertible \Rightarrow det A = 0 \Rightarrow at least one eigenvalue is zero.

[In logic, the contrapositive of the statement $p \Rightarrow q$ is not $q \Rightarrow$ not p. If a statement is true, then its contrapositive is true. If a statement is false, then its contrapositive is false.]