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3.1  The Cofactor Expansion for Determinants

Every square matrix has a determinant. All matrices with zero determinant are singular.
All matrices with non-zero determinant are invertible.

The determinant of a (1x1) matrix A =[a] isjust detA = a.

a b
From section 2.3, the determinant of a (2x2) matrix A = { d } is det A = ad—bc.
c

The determinants of all higher-order matrices can be expressed in terms of lower-order
determinants. Details are on pages 105 — 108 of the textbook.

Example 3.1.1

1 2 3
Find the determinantof A=| 4 5 6
7 8 9
+ - +
Expanding along the top row and noting alternating signs | — + —|,
+ - +
1 2 3
5 6 4 6 4 5
detA=[4 5 6|=+1x — 2x + 3%
8 9 7 9 7 8
7 8 9

= 1(45-48) — 2(36-42) + 3(32-35) = -3+12-9 =0

Therefore this matrix A is singular (has no inverse).

Definitions:

Let the ((n-1)x(n—1)) submatrix Aj; be the matrix obtained by the deletion of row i and
column j of the (nxn) matrix A. [det Ajj is sometimes known as the (i, j)-minor of A.]

The (i,j)-cofactor of an (nxn) matrix A is |Cj (A) = (—1)i+j det(Aij)
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In Example 3.1.1,

123
al5 6
A=14 56| = c,=(-1)" . 9‘:+(5x9—6x8):45—48:—3,
7 89
1+2 4 6
c, =(-1) . 9‘ = —(4x9-6x7) = —(36—-42) = +6,
1+3 4 5
e = (<) | = +(4x8-5x7) = —(32-35) = +3,
|13
Co = (-1)7], | = ~(1x6-3x4) = =(6-12) = +6, etc.

For the (nxn) matrix A, the cofactor expansion of det A along row i is then

n
det A = a;,C;; (A) +8;,Ci, (A) +... + 8, Cip (A) = Zlaijcij (A)
J:

Any row can be chosen for the expansion, as can any column j :

n
det A = a;;c,;(A)+a,;C,; (A)+...+a,C, (A) = Z;aijcij (A)
=

Choosing to expand down column 2 in Example 3.1.1,

4 6
79

|1
detA = + 5x(-1)""

N b~ =

2 3
5 6|=2x(-1)"
8 9

= —2(36-42) + 5(9-21) — 8(6-12) = 12-60+48 = 0
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Choose the row or column that has the most zero entries.
Where an entry is zero, the cofactor need not be evaluated.

Example 3.1.2

1 9 0 1

) ) 0 2 0 O
Find the determinant of B =

7 18 1 5

1 4 0 2

Row 2 and column 3 share the greatest number of zeros.
Column 3 looks easier (its non-zero entry is a 'l").

Expand the (4x4) determinant along column 3:

1 9 0 1
1 9 1
0 0 0 313
det :O+O+1x(—1) 0 2 0|+0
7 18 1 5
1 -4 2
1 4 0 2

Expand the new (3x3) determinant along row 2:

191
0 20 :0+2x(—1)2+21 ; +0=2(2-1)=4
1 -4 2

If a (4x4) matrix has no zero entries, then the cofactor expansion requires the evaluation
of four (3x3) determinants, each of which involves the evaluation of three (2x2)
determinants, for a total of twelve (2x2) determinants.
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As n increases, the number of (2x2) determinants that need to be evaluated in the cofactor
expansion for an (nxN) matrix with no zero entries increases very rapidly:

n # (2x2) determinants
2 1
3 3
4 12
5 60
6 360

The determinant of a triangular square matrix is just the product of the entries on the
leading diagonal.

Proof for all upper triangular (4x4) matrices:

a u v w
: . 0 b x vy
Find the determinant of U =
0 0 c z
0 0 0 d
Expand down column 1 repeatedly:
b x vy
detU = a(-1)"|0 ¢ z|+0+0+0 = ab(-1)" g ; +0+0
0 0 d
= ab(cd —0) = abcd

For a square matrix A, if any of the following is true, then det A=0:

A row or column is all zeros. [This is obvious upon expanding along the zero row/col.]
Two rows are identical.

Two columns are identical.

One row is a multiple of another row.

One column is a multiple of another column.
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Example 3.1.3

Evaluate detC =| 67 e 3
101 1111 -47

T =23 601 -2

A

[\

=]
N OO O
S O o O

—

Matrix C is lower triangular = detC = Ix2x3x2x1 =12

Example 3.1.4
1 -1 1 3

-4 2 -4 2
Evaluate detD =
7 2 7 1

11 3 11 27

Columns 1 and 3 of matrix D are identical = detD = 0

Effect of row operations on the determinant

I (interchange two rows) changes the sign of the determinant
II (multiply a row by k # 0) multiplies the determinant by K .

11T (add a multiple of one row to another row) does not change the determinant

Also det AT=det A for all square matrices A .

Therefore column operations have the same effect on the determinant as row operations.
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Example 3.1.1 (again)

Find the determinant of A =

N B~ =
o L N
O N W

Use elementary row operations to carry matrix A towards row echelon form:

123 12 3
R, —4R,

detA=|4 5 6| —2— 1% detA=[0 -3 -6
R, - 7R,

7 8 9 0 -6 —12

Clearly R3=2R, = detA = 0.
One further row operation (R 3 — 2R ;) will carry row 3 to all zeros.

Example 3.1.5 (Textbook, page 114, exercises 3.1, question 1(0))

1 -1 5 5
1 2 4
Compute det A = .
-1 -3 8 0
1 1 2 -1

Use elementary row operations to carry the matrix to upper triangular form:

1 -1 5 1 -1 5 5
312 4 R, -3R, 0 4 -13 -11
-1 -3 8 0 R, +R, 0 4 13 5
12 -1 R,—R, 0O 2 -3 -6
1 -1 5 5 1 -1 5 5
0 4 -13 -I1 0 13 —11
> ,
R, +R, 0 0 0 -6 R, <R, o o I -1
R—3R, Jo 0o I - 0O 0 0 -6

= detA = —1x4x%x(—6) = +84
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Example 3.1.6 (Textbook, page 114, exercises 3.1, question 6(a))

a b C
Compute detA =|a+1 b+1 c+1].
a-1 b-1 c-1

Note that the sum of rows 2 and 3 is twice row 1, which suggests a zero determinant.

a b c a b c a b C
R, +R,
a+l b+1 ¢c+1| —=> 2a 2b 2c |=2| a b c |=0
a-1 b-1 c¢c-1 a-1 b-1 c-1 a-1 b-1 c-1

because rows 1 and 2 are now identical.

Example 3.1.7 (Textbook, page 114, exercises 3.1, question 7(a))

a b c —X -y -2
Iflp g r|=-1,compute |3p+a 3q+b 3r+c|.
Xy z 2p 2q 2r
—X -y —2Z X y z
3p+a 3q+b 3r+c|=(-1)x2|3p+a 3q+b 3r+c
2p 2 2r p q r
X y z a b c
R,-3R, R, <R,
-2la b ¢|] ———— +2|x y z
P qr P qr
a b c

o
©
o]
=

=—-2x-1=2
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Example 3.1.8 (Textbook, page 115, exercises 3.1, question 16(c))

2

1 x x X
x x x 1
Find the value(s) of x for which matrix A =| | is singular.
X~ X X
¥ 1 x X

Use elementary row operations to carry the matrix to upper triangular form:

1 x x X X X’ X
det A — X X 1 R, —XR, 0 0 4 1-x
W O 1 x R, - xR, > 1o 0 1-x x(1-x*)
¥ 1 x x R,—XR, 0 1-x' x(1-x") x*(1-x*)
1 X X X’
R,oR, 0 1-x* x(l—x“) xz(l—x“) :—(1—x4)3
0 0 1-x* x(l—x“)
0 0 0 1-x*
Matrix A is singular if and only if —(1—X4)3 =0.

The only real values of X for which this happens are x ==1 .

Block Matrices

If A and B are square matrices, then for all matrices X, Y of the appropriate
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Example 3.1.9 (Textbook, page 115, exercises 3.1, question 10(a))

1 -1 2 0 2
0 10 4
Compute detM =1 1 5 0 0].
0 0 0 3 -1
0 0 0 1 1
1 -1 2 0 -2
A X 3 -1
= ,where A= 0 1 0|, X=|4 1 and B =
0] 1 1
1 15 0 0
= detM = detAdetB
-1 2 | o
detA=[0 1 0 =0+(—1)”1 [+0=+(5-2)=3
I 15
detB =3-(-1) =4

= detM = 3x4 = 12
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3.2 Determinants and Inverse Matrices

For any set of square matrices of the same dimensions, the determinant of a product is the
product of the determinants:

det (AB) = (det A) (det B), det (ABC) = (det A) (det B) (det C), ete.

It then follows that

det( A*) = (det A

AA =] = det(AA’l):l =N detAdet(A’l)zl =N
1
det A

det(A‘l) =

The adjugate (or adjoint) of any square matrix A is the transpose of the matrix of
cofactors of A:

adj(A) = [Cij (A)JT [The 2x2 case is adj{ i (:) } = { _(i _Z }.]

Example 3.2.1

1 9 1
Compute adj (A), Aadj (A)and det(A)for A= 0 2 0
1 4 2
The matrix of cofactors is
]2 0 0 0 0 2
e +—42‘_‘12‘ ‘1—4‘ s o
C= c: CZ cz = —‘ ? 1‘ +1 1‘ —‘1 9‘ =22 1 13
¢ ¢, G, -4 2 1 2 1 -4 50 2
9 1 1 1 1 9
T2 0 _‘0 0‘ 0 2]
4 =22 =2

adfA=CT=| 0 1 0
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Example 3.2.1 (continued)

1 9 1 4 22 -2 2 00
AadjA=|0 2 0 0 1 0|=]02 0|=2Il
1 4 2| -2 13 2 0 0 2
Expand along the middle row to find det A :
detA=0+2xC,+0 =2
Note that Aadj (A) = (det(A)1 = A' = adjA
det A
The inverse of any non-singular matrix A is
Al adj( A)
det(A)

However, this is often a very inefficient way to compute the inverse of a matrix.
Gaussian elimination of [A|l] to [ || Al s usually much faster.

Example 3.2.2 (Textbook, page 127, exercises 3.2, question 2(e))

Use determinants to find which real value(s) of ¢ make this matrix invertible:

1 2 -1
A=]0 -1 ¢
2 ¢ 1
1 2 -1
1 -1 1 2
A=[0 -1 c|=0+(-1) ~-c
2 1 2 cC
2 ¢ 1

= —-(1+2) —c(c—4) = «(c*~4c+3) = (c-1)(c-3)
detA=0 = c=1orc=3

Therefore the matrix is invertible for all real values of ¢ exceptc=1 or ¢ =3.
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Example 3.2.3  (Textbook, page 127, exercises 3.2, question 16)

Show that no 3x3 matrix A exists such that A>+1 = O..
Find a 2x2 matrix A with this property.

A+1=0 = A’=-1 = det(A*)=det(-1)
= (detA)’ =det(-1)
But —I is an (nxn) matrix whose only non-zero entries are the n entries of —1 down the

main diagonal
+1 (if nis even)

= det(-1) = (—1)n - {_1 (if nis odd)

For a (3x3) matrix we therefore have (det A)2 = —1, which has no real solution.

For a (2x2) matrix we have (det A)2 =+1 = detA==1

, a blla b -1 0 a’+bc b(a+d) -1 0
Solving = = , =
c dlc d 0 -1 c(a+d) d*+hc 0 -1
— d=-a and bc=—@*+1).
The set of all (2x2) matrices satisfying A?+1 = O is
a b
A= a>4+1 (aeR, beR, b=0)
—a
-b

) ) a b 0 1
One member of this setis A = = .
c d -1 0
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Cramer’s Rule

For a linear system of n equations in n unknowns, if the coefficient matrix A is invertible,
then define the matrices Ay by replacing the i™ column of A by B and the unique
solution of the linear system AX=B is X=[X; Xz ... Xn]T , where

_ detAk

i det A

Example 3.2.4 (Textbook, page 127, exercises 3.2, question 8(c) modified)

Find the value of X when

SX+y-z=-7

2X—-y—-27z=6

3Xx +2z=-7
5 1 -1 -7 -7 1 -1
A=|2 -1 2|, B=| 6 = A=| 6 -1 2
3 0 2 -7 -7 0 2

Expanding down the middle column,
-7 1 -1

* 6 _2 + _7 —1
T = (=07 x| o
= —(12—14) - (—14—7) =+2+21=23
5 1 -1 s o <
detA=]2 -1 -2 |=Ix(-1)" 3 Z‘Jr(—1)><(—1)2+2 2 +0
3 0 2

= —(4+6) — (10+3) =-10-13=-23

“ = det A B ﬁ _
det A =23
Therefore x = —1.

Cramer’s rule is computationally a very inefficient method for solving linear systems.
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-2

MATH 2050
Example 3.2.5 (Textbook, page 127, exercises 3.2, question 8(a))
Use Cramer’s Rule to solve the system
2x+y =1
IX+7y =-=2
1 11 2 1
= A = , A, =
-2 7 3 2

2 1
A = , B =
detA = 7+2 =9, detA, = —4-3 = -7

= detA =14-3 =11,

det A 9 det A, -7
- = = — an y = = —
det A A det A =1
Check 1:
a1 7 -1 1 7 -1
C14-31 -3 2| 11| -3 2
7 -1 1 9
— X=—A'B =L _ 1 v
111 =3 2 || =2 11| =7
Check 2
9 — _ 11 _
2(F)+(FF) = H =1 v
v
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3.3 — Eigenvalues and Eigenvectors

A is an eigenvalue of an (n x n) matrix A if, for some column vector X # O,
AX = AX

The non-trivial column vector X is an eigenvector of A for that eigenvalue,

(as is any non-zero multiple of that column vector).

Example 3.3.1
1 1 1 6 1
AX = = = 6 = 6X

1
X = [ 5 } is therefore an eigenvector of A for eigenvalue 4 =6 (the 6-eigenvalue).

Example 3.3.2 Y
%, 2)

A mirror is in the x-Z plane in R® space.
The vector from the origin to a general point (X, Y, Z) is MIRROR o
(xi +yj + zk).
The reflection of this vector in the mirror is the vector (%% 2)
(Xi —yj + zK).
The operation of reflection may be represented by the matrix

1 00 1 0 0| X X
R=|10 -1 0 |,because RX =| 0 -1 O ||y |=]|-y

0 0 1 0 0 1 z z

Any vector in the plane of the mirror, (Xi + 0j + zK), does not move upon reflection.

Therefore X = [x 0 z]' is an eigenvector of R for eigenvalue A= 1 for any choices
of xand z that are not both zero. Because [x 0 z]' =[100]"x + [001]"z, the
basic set of 1-eigenvectorsis {[100]",[001]"}.

The general vector from the origin, proceeding out at right angles to the plane of the
mirror along the y axis, is (0i + yj + 0Kk).

Its reflection in the mirror is the vector (0i —yj + 0K).

Therefore X = [0y 0]" isan eigenvector of R for eigenvalue 4 =—1 for any
non-zero choice of y. The basic set of —1-eigenvectorsis {[0 1 0]" }.

No other vectors are parallel to their own reflections in the mirror.
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Characteristic Polynomial

If a non-zero column vector X is an eigenvector of (n x n) matrix A for eigenvalue A,
then

AX =X = AX =1IX = AIX-AX=0 = (A1-A)X =0

But this square homogeneous linear system cannot have a non-trivial solution unless
(A1 —A) issingular = det(11-A) = 0.

The characteristic polynomial of any (n x n) matrix A is C, (/1) = det(M - A) , which is

a polynomial of degree nin 4. The eigenvalues of A are the n solutions of
Ca(4) = det(A1-A) = 0.

The A-eigenvectors of A are the non-trivial solutions to the homogeneous linear system
(A1-A)X =0.

Example 3.3.1 (continued)

1 1
Find all eigenvalues and their eigenvectors of A = { 5 7 }

A0 11 A-1 ~1 )
det(21 —A) = det - = = (A7 -84+7)+5
0 A |57 5 A-7

AP 81 +12 = (/1—2)(/1—6)
0 = A=2o0r A=6

det(21 - A)

i] =2:
Solving (21 -A)X, =0:

o e 2
= X-y=0 = y=x

1
Therefore the 2-eigenvectors of A are any non-zero multiples of X, = { { } .
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Example 3.3.1 (continued)

A, = 6 (which is the case considered earlier):
Solving (61 -A)X,=0:

LR e e MR Y

= 5Xx-y=0 = y=5X

1
Therefore the 6-eigenvectors of A are any non-zero multiples of X, = { s } .

Example 3.3.3

2 1
Find all eigenvalues and their eigenvectors of A = { 0 4 }

det(A1 - A) = detqé H—B iD = ‘182 {_14‘ = (2-2)(1-4)

det(ll—A)zO = A=2o0or A1=4

i] =2:
Solving (21 -A)X =0:

2-2 -1 0 -1 ]| x 0
0 2-4 0 2|y 0
= y=0, (xarbitrary)
1
Therefore the 2-eigenvectors of A are any non-zero multiples of X, = [ 0 } .

12 =4
Solving (41 —A)X, =0:

CEOEE hoal b I S

= 2x-y=0 = y=2X

1
Therefore the 4-eigenvectors of A are any non-zero multiples of X, = { 5 }
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Eigenvalues and eigenvectors do not have to be real.

cos@ —siné

The rotation matrix in R*, A = { }, has eigenvalues

sinfd cos@

A=cosf =+ jsinf = eije, (where j=\/—_1).

An upper triangular matrix has all its non-zero entries on or above the main diagonal.
1 5 3

0 -2 0 |[isupper triangular.
0 0 4

A lower triangular matrix has all its non-zero entries on or below the main diagonal.
1 0 0

2 3 0 | islower triangular.
3 2 4

The eigenvalues of a triangular matrix are just the entries on the main diagonal.

;t_all —a, —a,
0 21— e —

det(Al-A) = | G2 T T (ama)(A-ay).. . (A-ay)
0 0 - A-a,

det(A1-A) =0 = 1 =a,a,,..,3

> nn

The matrix in example 3.3.3 is upper triangular. We can say immediately that its
eigenvalues are 2 and 4 (the entries on the main diagonal).
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Example 3.3.4

3 1 1
Find all eigenvalues and their eigenvectorsof A = | -4 -2 -5
2 2 5
A-3 -1 -1
Ca(A) = det(Al-A)=| 4 A+2 5
-2 -2 A-5
Expand this determinant along the top row:
A+2 5 4 5 4 A+2
Ci(d) = (4-3 - (-1 + (-1

(4-3)(4*=34-10+10) + (424-20+10) — (-8+21+4)
(A2-64+9)4 + 24-6 = A(A-3)"+2(1-3)

(4-3)(A7=32+2) = (21-1)(4-2)(A-3)
ci(4)=0 = |A=lor A=2o0r A=3

For A =1:
Solving (ll —A) X=0:
-2 -1 -1|| x 0
4 3 S5y |=1]0
-2 -2 4|z 0
Carry the coefficient matrix to reduced row-echelon form:
1 11 1 1L 1
2 2 2 2
R, +(-2 R, —-4R
1—()—> 4 3 5 - 0 1 3
R, +2R,
-2 -2 4 0 -1 -3
1 1 0 -1
Mz_) 0 1 3
R;+R,
0 0 O

= X=2% and y=-32
1
The 1-eigenvector is therefore any non-zero multiple of X, = | -3
1
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Example 3.3.4 (continued)

For 4 =2:
Solving (21 -A)X =0:
-1 -1 -1} X 0
4 4 S|lyl|=1]0
-2 -2 3|z 0
Carry the coefficient matrix to reduced row-echelon form:
1 1 1 1 1 1
R, +(-1) R, —4R,
e 4 4 5 0 0 1
R, +2R,
-2 -2 3 0 0 -1
1 1O
Rl B Rz
——> |0 0 1
R, +R,
0 00
= X=-Yyand z=0.

The 2-eigenvector is therefore any non-zero multiple of X, =

For A =3:
Solving (3| - A) X=0:
0 -1 -1 || x 0
4 5 S50y |=1]0
-2 2 2|z 0
Carry the coefficient matrix to reduced row-echelon form:
1 1 1 I 1 1
R, <R, R, —4R,
4 5 5 0 1 1
then 0 -1 -1 0 -1 -1
R, +(-2)
1 00
Rl B Rz
——> | 0 1 1
R; +R,
0 00

= x=0and y=-z.

The 3-eigenvector is therefore any non-zero multiple of X, =

1
-1
0
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The multiplicity of an eigenvalue is the number of times that distinct eigenvalue is
repeated in the solution of the characteristic polynomial.

In Example 3.3.2, the three eigenvalues of R are —1, +1 and +1.
A =-1 has multiplicity 1. A =+1 has multiplicity 2.
In the other examples, all eigenvalues have multiplicity 1.

Each distinct eigenvalue has at least one basic eigenvector (and at most m, where m is the
multiplicity of the eigenvalue).

If and only if an (n x n) matrix has a total of n basic eigenvectors, then it can be
diagonalized.

Diagonalization

A square matrix that is both upper and lower triangular is diagonal.

1 0 O
0 3 0 |= diag(l,3,—4) is diagonal.
0 0 -4

Diagonal matrices have nice properties.

If D = diag(4,,4,,....4,) and E = diag(p,, s,..... 1) then
D+E = diag(ﬂ,1+,u1,/12+,uz,...,/1n+,un>

and DE = ED = diag(ilul,lzyz,...,inyn)

A square matrix A is diagonalizable iff an invertible matrix P exists such that
D =P'AP is a diagonal matrix.

Let Xi, Xz, ..., X, denote the columns of P, then we can write P = [ X; X, ... Xp ]
D=P'AP — PD=PP'AP=I1AP=AP

= [ X, X, - X, ]diag(4,4,,....4,) = AP
= [ AX X, o X, [ = ALX X, e X, ]

Therefore the main diagonal entries of D are the eigenvalues of A and
each column of P is an eigenvector for the corresponding eigenvalue.
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Example 3.3.5

31 1
Find the matrix P that diagonalizes A = | -4 -2 -5 | and write down the diagonal
2 2 5

matrix.

From Example 3.3.4, the eigenvalues and corresponding set of basic eigenvectors of A
are:

1 1 0
A=1, X =31, 4,,=2, X,=| -1, 4,=3, X;=| 1
1 0 -1
1 1 0
= P=|-3 -1
1 0 -1
and
0 0
P'AP = D = 2 0
0 3

To verify this result, let us find P"' by Gaussian elimination, then P™'AP.

1 1 0|10 0 1 1 0] 100
R, +3R,
[P[1]=]-3 -1 1|0 1 0 2 1/ 3 10
R3_Rl
1 0 -1/0 0 0 -1 -1/-1 0 1
1 1 0] 10 10 —3|-3 -3 0
R,+2 1l 3 1 R -R, 1| 3 1
—=5]o 1 1|31 —t 25001 L] 3 Lo
2|z
0 -1 -1{-1 0 1 oo -1 L 11
RI_R3
q R 10 0[-1 -1 -1
PR _ -1
e 0 10/ 2 1 1|=[1P"]
00 1|-1 -1 =2

R, x(-2)
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Example 3.3.5 (continued)

and it is straightforward to verify that

-1 -1 -1 1 1 O 1 0 0
PP=| 2 1 1|3 -1 1[={010]=1I
-1 -1 -2 1 0 -1 0 0 1
31 1 1 0 O 1 2
AP=1 -4 -2 5||-3 -1 1|=|-3 -2 3
2 2 5 I 0 -1 1 0 -3

-1 -1 -1 1 2 0 1
= P'AP=| 2 1 1|3 -2 3[=]0
-1 -1 2 1 0 -3 0

Interchanging the order in which the eigenvalues are written in D also interchanges the
corresponding columns in the diagonalizing matrix P.

D=P'AP = PDP'=PP'APP'=IAI=A

= Ak:(PDP’I)k:(PDP’I)(PDP’I)...(PDP") — PDIDID...IDP" = PD¥p™
k factors

k factors
It then follows that the eigenvalues of A" are the k™ powers of the eigenvalues of A.
To find A quickly for high values of k, find the eigenvalues and eigenvectors, hence
matrices D, P and P, then Ak = PDkP'l.
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Example 3.3.6

3 1 1
Find A’ , where A =| -4 -2 -5
2 2 5

From Examples 3.3.4 and 3.3.5,

1 00 1 1 O -1 -1 -1
D={02 0|, P=|{-3 -1 1| ad P'=| 2 1 1
0 0 3 1 0 -1 -1 -1 2

1 1 ol 0 0 -1 -1 -1
= A=PDP'=|-3 -1 1 0 2° 0 2 1 1
1 0 -1 0 0 3 -1 -1 2

1 1 O -1 -1 -1
= -3 -1 1 64 32 32
1 0 -11]| 243 -243 486

63 31 31
= A =| =304 -272 -515
242 242 485

This can be verified by the tedious process of calculating

7 3 3 15 7 7
A’=AA=| 14 -10 -19 |, A’=A’A=| 40 -32 -59 | and finally
8 g8 17 26 26 53
63 31 31

A =NA=| 304 272 -515
242 242 485




MATH 2050 3.3 — Eigenvalues and Eigenvectors Page 3.25

Example 3.3.7 (Textbook, exercises 3.3, page 141, question 3)

Show that A has A =0 as an eigenvalue if and only if A is not invertible.

The characteristic equation for the eigenvalues is det (A1 —A) = 0 which becomes
(2-4)(A-4,)...(A-4,) = 0.

If any one or more of the eigenvalues is zero, then det(01-A) = —detA = 0

= A issingular.

If none of the eigenvalues is zero, then 4 =0 cannot be a solutiontodet (A 1-A) = 0
= detA#0 = A isinvertible. The contrapositive of this statement follows:

A isnotinvertible = detA=0 = atleast one eigenvalue is zero.

[In logic, the contrapositive of the statement p = is notq = notp.
If a statement is true, then its contrapositive is true.
If a statement is false, then its contrapositive is false.]




	3.1 The Cofactor Expansion for Determinants
	Example 3.1.1
	Example 3.1.2
	Determinant of a triangular matrix

	Examples 3.1.3 & 3.1.4

	Example 3.1.5
	Examples 3.1.6 & 3.1.7

	Example 3.1.8
	Block Matrices
	Example 3.1.9

	3.2 Determinants and Inverse Matrices
	Example 3.2.1
	Example 3.2.2
	Example 3.2.3
	Cramer’s Rule & Example 3.2.4

	Example 3.2.5

	3.3 – Eigenvalues and Eigenvectors
	Examples 3.3.1 & 3.3.2

	Characteristic Polynomial
	Example 3.3.3
	Eigenvalues of a triangular matrix
	Example 3.3.4
	Diagonalization
	Example 3.3.5
	Example 3.3.6
	Example 3.3.7


