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4.1 Vectors and Lines 
 
Scalar quantities are defined by just one number.   Examples of scalars are time, length, 
electric charge, speed, mass and density. 
 
If a quantity requires information on magnitude and direction, then it is a vector.   
Examples of vectors are displacement, velocity, magnetic intensity and force. 
 
Two vectors are equal if and only if they have equal magnitudes and the same directions. 
 
 
Example 4.1.1    
 
Points A, B, C, D  are in the xy-plane as shown. 
 
AB
JJJG

  is the geometric vector from A to B. 
 
A  is the tail and B is the tip of vector AB

JJJG
. 

 
CD
JJJG

  is the geometric vector from C to D.  
 
But both geometric vectors represent the same 
displacement (3 units left and 4 up). 
 

They are both representations of the same underlying vector  
3
4
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

aK . 

 
The length (or magnitude or norm) of a vector aK  is aK . 

In this example,  and AB CD= = a
JJJG JJJG K

2 23 4 9 16 25 5AB CD= = = + = + = =a
JJJG JJJGK . 

 
 
A geometric vector may be placed anywhere in space. 
 

The position vector of point  P (x, y, z)  is  
x

OP y
z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

JJJG
, 

 
where  O  is the origin (0,0,0). 
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Some properties of vectors 
 
Equality: 

1 2

1 2

1 2

x x
y y
z z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 if and only if (x1 = x2  and  y1 = y2  and  z1 = z2); 

 
Length (or “norm”): 

2 2

x
y x
z

⎡ ⎤
⎢ ⎥= ⇒ = +⎢ ⎥
⎢ ⎥⎣ ⎦

v vK K 2y z+  

 
0= ⇔ =v 0 v

KK K   (and the direction of =v 0
KK  is undefined) 

If 1=uK  then  is a unit vector (often written as u ) uK ˆ

The unique unit vector in the same direction as a non-zero vector vK   is  ˆ =
vv
v

K
K . 

For any scalar a and any vector v,   a a=v vK K  

In particular, ( )1 1− = − = − + =v v vK K K vK  
Two non-zero vectors u  are parallel iff one of them is a non-zero scalar multiple  a  of 
the other.   They point in the same direction if  a > 0, in opposite directions if  a < 0. 

, vK K

 
 
Parallelogram Law  
 
Vectors can be added “tip to tail”: 
  AB BC A+ =
G G JJJG

C
JJJ JJJ

 
 
Consider the vectors in this parallelogram. 
BC
GJJJ

 has the same length and is in the same 
direction as AD=v

GK JJJ
.   Therefore BC = v

JJJG K . 
 
The diagonal vector AC

JJJG
 that shares the same tail as both vectors andAB AD= =u v

JJJG JJJGK K  is 
clearly the sum u v

JJJ JJJ JJJ J
. AB AD AB BC AC+ = + =

G G G G JJG
+ =

JJJK K

 
The other diagonal is BD BA AD AB AD= + = − + = − + = −u v v u

JJJG JJJG JJJG JJJG JJJG K K K K  
 
The diagram also illustrates the fact that vector addition is commutative: JJJ JJJ JJJ JJJ JJJ JJJ JJJ
AC AB BC AD DC BC AB= + = + = + ⇒ + = +u v v u
G G G G G G G K K K K  
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For any two points  P1(x1, y1, z1)  and  P2(x2, y2, z2), 

( )
( )
( )

2 1

1 2 2 1

2 1

x x

P P y y

z z

⎡ ⎤−
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥−⎣ ⎦

JJJJG
   

and ( ) ( ) ( )2 2

1 2 2 1 2 1 2 1d P P x x y y z z= = − + − + −
JJJJG 2

 

 
 
 
Example 4.1.2    
 
Find the vector from point  A(5, 1, –4)  to point  B(–3, 10, 8), find the distance  d  
between these two points, find the unit vector  in the direction v̂ AB

JJJG
 and find the 

coordinates of the point  P  three quarters of the way from  A  to  B . 
 
 

( )
( )
( )

3 5 8
10 1 9
8 4 12

AB
− − −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢= − =⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

JJJG ⎥
⎥   and  

( )2 2 28 9 12 64 81 144 289d AB= = − + + = + + =
JJJG

 

⇒   d  =  17 

[ ]T1ˆ 8 9 12
17

AB
AB

= = −v
JJJG
JJJG  

 

27
4

8 6
3 3 9
4 4

12 9

AP AB
⎡ ⎤− −⎡ ⎤
⎢ ⎥⎢ ⎥= = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

JJJG JJJG
 

 

27 31
4 4

5 6
1
4 9 5

OP OA AP
⎡ ⎤ ⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= + = + =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

JJJG JJJG JJJG 1
 

 
Therefore  P  is at (–1, 7.75, 5). 
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More generally, if we wish to find a point  P  that divides a line segment AB in the ratio  
r : s, we can proceed as follows.     
 

andAP r AP PB AB
PB s

= + =

)

 

 
( ) ( ) (AP s r PB r AB AP⇒ = = −  

 

( )( ) ( ) ( )rAP s r r AB AP AB
r s

⇒ + = ⇒ =
+

 

 
Vectors ,AP AB

JJJG JJJG
 are parallel 

 
rAP A

r s
⎛ ⎞⇒ = ⎜ ⎟+⎝ ⎠

JJJG JJJG
B  

 
But  AB AO OB OB O= + = −

JJJG JJJG JJJG JJJG JJJG
A   and  OP OA AP= +

JJJG JJJG JJJG
 

 

( )r r rOP OA OB OA OB OA
r s r s r s

+ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⇒ = + − = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

JJJG JJJG JJJG JJJG JJJG J Gs r
+

JJ
 

 
Therefore the position vector of  P  is  
 

s rOP OA OB
r s r s

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

JJJG JJJG JJJG
 

 

At the midpoint  M :  r = s = 1  and  ( )1
2

OP OA OB= +
JJJG JJJG JJJG

 

 
In Example 4.1.2, [ ] [ ]T T5 1 4 , 3 10 8 , 3 and 1OA OB r s= − = − =

JJJG JJJG
=  

 

31
4

3 5 4
3 1 110 1 31
4 4 4

8 4 16 4

OP
1⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ −

⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇒ = + = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

JJJG
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Vector Equation of a Line  
 
A line needs two vectors to define it:  the position of a point known to be on the line and 
the orientation of the line in space. 
 
Let d  be a vector parallel to the line  L . 

K

[  must be a non-zero vector.] d
K

 
To get from the origin  O  to a general point  P  
on the line, we follow vectors via a point Po  
known to be on the line. 
 

o oOP OP P P= +
JJJG JJJG JJJG

 
 
But any vector along the line L is parallel to d

K
 

 

oP P t⇒ = d
JJJG K

, for some value of the scalar  t . 
As the value of the parameter  t  varies along the entire range of the real numbers, so the 
point P sweeps along the entire length of the line  L . 
 
The vector parametric equation of the line is therefore 
 

( ),t t= + ∈op p d
KK K \  

 
where  is the position vector of a point  Po  known to be on the line and  d  is a 
non-zero vector parallel to the line.  

opK
K

 
This single vector equation generates three Cartesian equations. 
The line through    with direction vector  (o o o o, ,P x y z ) [ ]Ta b c= ≠d 0

KK
  is also 

defined by 

( )
o

o

o

,
x x ta
y y tb t
z z tc

= +
= + ∈
= +

\  

 
A point  P(x, y, z)  is on this line if and only if a scalar  t  exists that satisfies all three 
equations simultaneously. 
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Example 4.1.3    
 
Find the equations of the line that passes through the points  A(1,3,5)  and  B(2,6,9). 
 
Either of the points A or B may be taken as the point Po that is known to be on the line. 
Set [ ]T1 3 5=opK . 
 
Vector  is certainly parallel to the line. AB

JJJG

Set . 
( )
( )
( )

2 1 1
6 3 3
9 5 4

AB
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

d
JJJGK

The vector parametric equation of the line is 
 

 . ( )
1 1
3 3 ,
5 4

t t
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + ∈⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

pK \

 
The corresponding Cartesian parametric equations are 
 
 x = 1 + t ,   y = 3 + 3 t,   z = 5 + 4 t . 
 
By making  t  the subject of all three equations, we arrive at the Cartesian symmetric 
form of the equations of the line: 
 

 1 3
1 3 4

x y zt − − −
= = =

5  

 
Note how the elements of the line direction vector are in the denominators and the 
coordinates of a point on the line are in the numerator. 
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Example 4.1.4    
 
Find the points of intersection (if any) of the pair of lines 
 
[ ] [ ] [ ]T T5 2 2 2 1 0x y z s= + T  
and 
[ ] [ ] [ ]T T6 2 8 1 1 2x y z t= − + − T  
 
 
At any point of intersection the x coordinates on the two lines must be the same: 
 x  =  5 + 2s  =  6 + t  
and the y coordinates on the two lines must be the same: 
 y  =  2 + s  =  –2 – t  
and the z coordinates on the two lines must be the same: 
 z  =  2  =  8 + 2t  
 
The last equation yields  t  =  (2 – 8) / 2  =  –3 
Substituting into the other two equations: 
 5 + 2s  =  6 – 3    ⇒   2s  =  –2    ⇒   s  =  –1 
and 
 2 + s  =  –2 + 3    ⇒   s  =  –1 
 

(or one may reduce the linear system 
2 1 1
1 1 4
0 2 6

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 to row-echelon form.) 

 
The system of equations is consistent, with the unique solution   s = –1, t = –3. 
⇒ x  =  5 + 2s  =  5 – 2  =  3 , 
 y  =  2 + s  =  2 – 1  =  1 , 
 z  =  2 
 
The unique point of intersection is  (x, y, z)  =  (3, 1, 2) . 
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Example 4.1.5    
 
Find the points of intersection (if any) of the pair of lines 
 

3 , 1 , 1x s y s z= + = + = + s  
and 

2 , 1 ,x t y t z= − = − = t  
 
Matching the coordinates at any point of intersection: 
 

3 2
1 1
1

x s t
y s t
z s t

= + = −
= + = −
= + =

 

 
From the latter two equations,   
1 – t  =  t    ⇒   2t  =  1    ⇒   t = 1/2     ⇒     s = –1/2 
 
⇒   x  =  3 + s  =  3 – 1/2  =  5/2   and   x  =  2 – t  =  2 – 1/2  =  3/2 
which is inconsistent. 
 
The lines therefore do not meet anywhere. 
 

Or use row operations to carry 
1 1 1
1 1 0
1 1 1

−⎡ ⎤
⎢
⎢
⎢ ⎥

⎥
⎥

− −⎣ ⎦

 to the row-echelon form 
1 1 1
0 1 0
0 0 1

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

which is inconsistent. 
 
 
The lines are not parallel (their direction vectors are [ 1  1  1 ]T  and  [ –1 –1  1 ]T). 
They are skew. 
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Example 4.1.6   (Textbook, exercises 4.1, pages 167-168, question 34) 
 
The line from a vertex of a triangle to the midpoint of the opposite side is called a 
median of the triangle.    If the vertices of a triangle have position vectors , 
show that the point on each median that is a third of the way from the midpoint to the 
vertex has position vector 

, andu v wK K K

(1
3 + +u v wK K K ) .   Conclude that the point  C  with position 

vector (1
3 + +u v wK K K )  lies on all three medians.   This point  C  is called the centroid of 

the triangle. 
 
 

( ) ( )1 1
2 2OM OU OW= + = +u w

JJJJG JJJG JJJJG K K  

 

 
C  is one third of the way from  M  to  V  
 

( )2 1 2 1 1
3 3 3 2 3 3

OC OM OV +⎛ ⎞⇒ = + = + = + +⎜ ⎟
⎝ ⎠

u w v u v w
K KJJJG JJJJG JJJG K K K K  

A corresponding result holds for the other two medians. 
 
For example, the position vector of the point one third of the way from the midpoint of 

side  VW  to vertex  U  is ( )2 1 1
3 2 3 3

+⎛ ⎞ + = + +⎜ ⎟
⎝ ⎠

v w u u v
K K

wK K K K . 

Therefore the point  C  lies on all three medians. 
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4.2  Projections and Planes 
 
In section 2.2 matrix multiplication of an (m×p) matrix A by a (p×n) matrix B was 
introduced as an array of dot products of row vectors with column vectors: 

1

1

2
1 2,

p

k

j

j
ij ij i j ipi i ik kj

pj

b

b
C AB c c R C a a a a b

b
=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤= = = = =⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑"
#

 

The dot product of two vectors 
1 2

1

1 2

and 2

x x
y
z z

y
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= = ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

u vK K

⎦

2

 is similarly defined as 

[ ]
2

T
1 1 1 2 1 2 1 2 1

2

x
x y z y x x y y z z

z

⎡ ⎤
⎢ ⎥= = = + +⎢ ⎥
⎢ ⎥⎣ ⎦

u v u vK K K Ki  

  
Because the dot product of two vectors is a number (a scalar), it is also known as the 
scalar product. 
 
 
Example 4.2.1    
 

( ) ( )T

4 1
2 , 2 4 1 2 2 3 2 2
3 2

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = ⇒ = = × − + − × + × = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

u v u v u vK K K K K Ki  

 
 
 
Properties of the dot product 
 
Let  denote vectors in  (or ) and  k  be any scalar. Then , ,u v wK K K 3\ 2\

∈u vK Ki \
K K K

  (the dot product is a real number) 
=u v v uKi i

K
 (the dot product is commutative) 

0= =0 v v 0
K KKi i  (zero vector) 

2=v v vK K Ki  (length2) 

( ) ( ) (k k k= =u v u v u vK K K K K Ki i i
K K K K K K K

)
i

 (scalar multiplication) 

( )± = ±u v w u v u wi i  (the dot product is distributive over addition) 
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Angle between Two Vectors    
 
Let  θ   be the angle between vectors andu vK K . 
 
Apply the law of cosines to the triangle. 
 
( ) ( ) ( ) ( )( )2 2 2 2 cBC AB AC AB AC osθ= + −  
 

2 2 2 2 cosθ⇒ − = + −v u u v u vK K K K K K  
 
But ( ) ( )2− = − − = − − +v u v u v u v v u v v u u uK K K K K K K K K K K K K Ki i i i i  
 
 2 22= − +v u v uK K K Ki  
 

2 cos 2θ⇒ − = − ⇒u v u vK K K Ki  
 

cosθ=u v u vK K K Ki  
 
and the angle  θ   between non-zero vectors andu vK K  can be found from  
 

cosθ =
u v

u v

K Ki
K K  

 
Recall that, for an acute angle θ  (first quadrant), 
 20 cos 0πθ θ< < ⇒ >  
 
and for an obtuse angle (second quadrant), 
 2 cos 0π θ π θ< < ⇒ <  
 
If the dot product is negative, then  
the angle between the two vectors is obtuse. 
The vectors are pointing away (approximately) from each other. 
 
If two non-zero vectors are at right angles, then 0=u vK Ki . 
 
If  then  are orthogonal and  0=u vK Ki anduK

K KK
vK

=either u 0  or the angle between the vectors is or= v 0K
2
π . 
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Example 4.2.2    
 
Points  A(3,0,1), B(5,1,0) and C(9,2,2)  define a triangle  ABC.  
Show that the triangle contains an obtuse angle. 
 

[ ] [ ] [ ]T T5 1 0 3 0 1 2 1 1AB = − =
JJJG T−  
 

[ ] [ ] [ ]T T9 2 2 3 0 1 6 2 1AC = − =
JJJG T  
 

[ ] [ ] [ ]T T9 2 2 5 1 0 4 1 2BC = − =
JJJG T  
 
The vectors with tails at point B are andBC B= =u v A

JJJG JJJGK K  
 

[ ] [ ] ( ) ( )T T4 1 2 2 1 1 4 2 1 1 2 1 8 1 2 7 0= − − = × − + × − + × = − − + =u vK Ki i − <

⇒

 
 

0BC BA <
JJJG JJJG
i    the angle at B  is obtuse. 

[One can quickly deduce that  and 0AB AC >
JJJG JJJG
i 0CB CA >

JJJG JJJG
i ,  

so that the angles at  A  and at  C  are both acute.] 
 
 
 
Example 4.2.3    
 
Find all real numbers  x  such that  [ x 1 2 ] T  and  [ x –3 –x ] T  are orthogonal. 
 

( )(21 3 3 2 3
2

x x
x x x x

x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = − + = + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

i )1  

For orthogonality,  (x + 3)(x – 1) = 0    ⇒   x = –3  or  x = 1. 
 
One can quickly check that [ –3 1 2 ] T  and  [ –3 –3 –3 ] T  are orthogonal and that 
[ 1 1 2 ] T  and  [ 1 –3 1 ] T  are orthogonal. 
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Projections  
 
In this diagram,  is the shadow of vector 1QP=u

JJJGK QP=v
JJJGK  on 

the line  L  that passes through Q and whose line direction 
vector is the non-zero vector d

K
. 

 

1QP=u
JJJGK

K K
 is parallel to d . 

K

1P P− =v u
JJJG

 is orthogonal to d . 
K

 
The vector   has therefore been decomposed into a pair of orthogonal vectors, one 
parallel to the line and the other orthogonal to the line. 

QP=v
JJJGK

 
The “shadow” vector  is the projection of 1QP=u

JJJGK vK  on d
K

, denoted by . proj= du vKK K

 
t⇒ =u d u d

KK K&
K

  for some scalar t. 
 
( ) ( ) 2

0 0t t− ⊥ ⇒ − = ⇒ − = ⇒ =v u d v d d v d d d v d d
K K K K K K KK K K K Ki i i i t

K
 

 

2t
⎛ ⎞
⎜ ⎟⇒ = ⇒ =
⎜ ⎟
⎝ ⎠

v d v du
d d

K KK K
2 d
Ki K

K
i
K ,   (which requires ≠d 0

KK
). 

 
Another way of writing the projection, in terms of the unit vector  parallel to the line, is d̂
 

( )ˆ ˆproj =dv v dK dK Ki  

 
and the vector  is orthogonal to dproj− dv K

K vK
K

. 
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Example 4.2.4    
 
Express the vector [ ]T3 4 2=vK  as = +v a b

KKK , where aK   is parallel to 

[ ]T4 4 7=d
K

 and b  is orthogonal to 
K

d
K

. 
 
 

[ ]T4 4 7 16 16 49 81 9= ⇒ = + + =d d
K K

=  
 

[ ]T4 4 7ˆ
9

⇒ = =
dd
d

K
K  

 

( ) ( )
3 4 4 4

1 1 1 42ˆ ˆ ˆproj 4 4 12 16 14 4 4
9 9 9 81

2 7 7 7

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = + + =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

da v v d d dK
K K Ki i  

 
4

14 4
27

7

⎡ ⎤
⎢ ⎥⇒ = ⎢ ⎥
⎢ ⎥⎣ ⎦

aK  

 
( )
( )
( )

3 4 81 56 25
14 1 14 4 108 56 52
27 27 27

2 7 54 98 44

−⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − = − =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

b v a
K KK  

and 
4 2

14 14 5
27 27

7 4

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

v a b
KKK

5
2
4

 

 
aK  and b  should be orthogonal.   Checking our answers: 

K

 

( )2

4 25
14 1 144 52 100 208 308 0
27 27 27

7 44

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

a b
KKi i =   
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Distance of a Point from a Line 
 
The distance  r  of a point  P  from the line through  Q  
with direction vector d  is clearly 

K
1 projr PP= = − dv vKK K ,  

where . QP=v
JJJGK

 
 
 
 
Example 4.2.5    
 
Find the distance from the point  P(3, –1, 4)  to the line through the points  Q(0, 1, 3)  and  
R(2, 2, 7). 
 
 
The line direction vector is [ ] [ ] [ ]T T2 2 7 0 1 3 2 1 4QR= = − =d TJJJGK

 
 

[ ]T1ˆ4 1 16 21 2 1 4
21

⇒ = + + = ⇒ = =
dd d
d

KK
K  

 
[ ] [ ] [ ]T T3 1 4 0 1 3 3 2 1QP= = − − = −v

JJJGK T  
 

( ) [ ] [ ]T
T 2 1 4ˆ ˆ ˆproj 3 2 1

21

⎛ ⎞
⎜ ⎟= = −
⎜ ⎟
⎝ ⎠

dv v d dK
K Ki i d  

 
[ ] [ ]

T
T2 1 46 2 4 8 8ˆ 2 1 4

2121 21 21
− +⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
d  

 

[ ] [ ]T T
1

8proj 3 2 1 2 1 4
21

PP⇒ = − = − −dv vK
JJJG K K  

 

( ) ( ) ( )( ) [ ]T T1 163 16 42 8 21 32 47 50 11
21 21

= − − − − = − −⎡ ⎤⎣ ⎦  

1 4830 230proj 2209 2500 121 3.31
21 21 21

r⇒ = − = + + = = ≈dv vKK K  

 
Also the location of the nearest point P1 on the line to the point P can be found: 

[ ] [ ]T T
1 1

13 1 4 47 50 11
21

OP OP PP= + = − − − −
JJJG JJJG JJJG

 ( )1
16 29 95
21 21 21is at , , .P⇒  
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Equations of Planes   
 
A plane, like a line, requires two vectors to define it:  one 
vector for its orientation in space, the other ( )0pK  to fix the 
location of any one point Po known to be on the plane. 
 
Unlike a line, the vector that defines a plane in  is its 
normal n  (any non-zero vector that is orthogonal to all vectors 
lying in or parallel to the plane). 

3\K

 
If and only if the point  P  lies in the plane, then the vector oP P

JJJG
 is orthogonal to the 

plane’s normal vector .   But nK o oP P P O OP 0= + = −p p
JJJG JJJG JJJG K K . 

 
Therefore the vector equation of the plane is  
 

( )0 0− =n p pK K Ki  
 
Another way to look at the equation of a plane is to note that the projections of vectors 

 and  in the direction of the normal vector OP
JJJG

oOP
JJJG

nK  will be equal if and only if point  P  
is on the plane.   The equation of the plane is then  
 

( ) ( ) ( ) ( )oˆ ˆ ˆ ˆ ˆ ˆ ˆ 0 0OP OP= ⇒ = ⇒ − = ⇒ −0 0n n n n p n p n n p p n p p
JJJG JJJG Ki i i i i i =0  

 
If the normal vector to the plane is [ ]Ta b c= ≠n 0

KK , then the equation of the plane 

becomes  [ ] [ ]T 0a b c x y z ] [( )T T
o o ox y z− =i  

( ) ( ) ( )o o o 0a x x b y y c z z⇒ − + − + − =  

or, defining a new constant  d  as   ( )o o od ax by cz= − + + = − 0n pK Ki , the equation of a 

plane with normal vector [ ]Ta b c=nK  is  
 

0ax by cz d+ + + =  
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Example 4.2.6    
 

Find the equation of the plane that is orthogonal to the line ( )32 0
1 3

yx z− −
4

− −
= =  and 

passes through the point (1, 1, 1). 
 
 
Any normal vector to the plane is parallel to the direction vector d

K
 of the line. 

Therefore let [ ]T1 3 4=Kn . 
The plane passes through the point (1, 1, 1)  

[ ]T1 1 1⇒ =0pK  

[ ] [ ]T T1 3 4 1 1 1 1 3 4 8⇒ = = + + =0n pK Ki i  
Also note that 
 [ ] [ ]T T1 3 4 1 3 4x y z x y z= =K Ki i + +n p  
Therefore the equation of the plane is = 0n p n pK K K Ki i  or 
 

3 4x y z+ + = 8  
 
 
 
Example 4.2.7    
 
Find the equation of the plane that is parallel to the plane  4x – 3y + 5z = 10  and passes 
through the point (3, 7, 2). 
 
 
The two planes are parallel     
⇒   their normal vectors are parallel. 
Therefore let [ ]T4 3 5= −Kn . 
The plane passes through the point (3, 7, 2) 

[ ]T3 7 2⇒ =0pK  
 

[ ] [ ]T T4 3 5 3 7 2 12 21 10 1⇒ = − = − +0n pK Ki i =  
 
Therefore the equation of the plane is = 0n p n pK K K Ki i  or 
 

4 3 5 1x y z− + =  
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Coordinate Basis Vectors    
 
In Cartesian coordinates in , the basis vectors are  3\

[ ]Tˆ 1 0 0=i  (or just  i), a unit vector pointing along the x axis,  

[ ]Tˆ 0 1 0=j  (or  j), a unit vector pointing along the y axis and  

[ ]Tˆ 0 0 1=k  (or  k), a unit vector pointing along the z axis.  
 
Any position vector [ ]Tx y z=pK  can be written as ˆ ˆ ˆx y z= + +p i j kK . 
 
 
Cross Product   
 
The normal vector to a plane is orthogonal to all vectors lying in that plane. 
If we know two non-parallel non-zero vectors in the plane, then any function of those 
vectors that results in a non-zero vector at right angles to both of them will provide a 
normal vector to the plane.   The cross product provides such an orthogonal vector. 
 
For any two vectors [ ] [ ]T

1 1 1 2 2 2andx y z x y z= =u vK K T  the cross product of u 
and v is defined by  
 

1 2

1 2

1 2

ˆ

ˆ

ˆ

x x

y y

z z

=

i

u v j

k

K K×  

Expanding down column 1, 
( )
( )
( )

1 2 2 1
1 2 1 2 1 2

1 2 2 1
1 2 1 2 1 2

1 2 2 1

ˆ ˆ ˆ
y z y z

y y x x x x
z x z x

z z z z y y
x y x y

−⎡ ⎤
⎢ ⎥= − + = −⎢ ⎥
⎢ ⎥−⎣ ⎦

u v i j kK K×  

This vector is orthogonal to both u and v.   Proof for u:  
 

( )
( )
( )
( )

1 1 2 2 1

1 1 2 2 1

1 1 2 2 1

x y z y z
y z x z x
z x y x y

−⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

u u vK K Ki i×  

 

1 1 2x y z= 1 2 1x y z−( ) 1 1 2y z x+ 1 2 1y z x−( ) 1 1 2z x y+ 1 2 1z x y−( ) 0=  

The proof for v is similar. 
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Equation of a Plane using the Cross Product 
 

 

If  P, Q, R  are three points in a plane, not all on the same 
line, then a normal vector to that plane is  PQ PR= ×n

JJJG JJJGK .    
 
Either her pairs of ct  can be used instead:  of the ot  ve ors

2 QR QP= ×n
JJJG JJJGK  or 3 RP RQ= ×n

JJJG JJJGK .   In general the 
magnitudes of these three cross product vectors will be 
different, but they will all be parallel to each other and 
normal to the plane. 
 
 
Example 4.2.8    
 
Find the equation of the plane that passes through the points  P(0, 2, 1), Q(3, 2, 4)  and  
R(1, 5, 7). 
 
 

[ ]T3 0 3PQ =
JJJG

  and  [ ]T1 3 6PR =
JJJG

 
 

ˆ 3 1
0 3 3 1 3 1ˆ ˆ ˆ ˆ0 3
3 6 3 6 0 3

ˆ 3 6

PQ PR⇒ = = = − +

i

u v j i j k

k

JJJG JJJGK K× ×  

 
[ ] [ ]T T9 15 9 3 3 5 3⇒ = − − = − −u vK K×  

 
Any non-zero multiple of a normal vector is also a normal vector. 
Therefore take [ ]T3 5 3= −nK

K JJJG JJJG
 

For the vector  any of  could be used.   Choosing  P,  0p , ,OP OQ OR
JJJG

 
[ ] [ ] [ ]T T T0 2 1 3 5 3 0 2 1 0 10 3 7= ⇒ = − = +0 0p n pK K Ki i − =  

 
[ ] [ ]T Tand 3 5 3 3 5 3x y z x y z= − = + −n pK Ki i  

 
Therefore the equation of the plane is = 0n p n pK K K Ki i  or 
 

3 5 3x y z 7+ − =  
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4.3 The Cross Product 
 
Quoting from section 4.2,  
 
For any two vectors [ ] [ ]T

1 1 1 2 2 2andx y z x y z= =u vK K T  the cross product of u 
and v is defined by  
 

1 2

1 2

1 2

ˆ

ˆ

ˆ

x x

y y

z z

=

i

u v j

k

K K×  

 
From this it follows that  is obtained from v uK K× u vK K×  by interchanging columns 2 and 3 
of the determinant.   But this interchange introduces a change of sign.   Therefore  

= −v u u vK K K K×
K

×  - the cross product is anti-symmetric (and therefore is not commutative). 
Setting  = any multiple k of u , we have v K

( ) ( ) ( )2k k k= − ⇒ = ⇒ =u u u u u u 0 u u 0
K KK K K K K K K K× × × ×  

Therefore the cross product of any pair of parallel vectors is the zero vector. 
Also 
 
  = =u 0 0 0 u

K K KK K× ×
 
  ( ) ( ) (+ = +u v w u v u wK K K K K K K× × )×

)
 
  ( ) ( ) (+ = +v w u v u w uK K K K K K K× × ×
 
Lagrange identity: 

( )2 2 2= −u v u v u vK K K K K Ki× 2  
 
But  cosθ=u v u vK K K Ki , where  θ  is the angle between the two vectors 
 

( )2 2 2 2 2 cos 2θ⇒ = −u v u v u vK K K K K K×  

( ) ( ) ( )2 221 cos sinθ θ= − =u v u vK K K K  
Therefore a coordinate-free geometrical interpretation of the cross product is 
 

sinθ=u v u vK K K K×  
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The scalar triple product of vectors [ ]T
1 1 1x y z=uK , [ ]T

2 2 2x y z=vK  and  

[ ]T
3 3 3x y z=wK  is  [ ]det=u v w u v wK K K K K Ki × , where [ ]u v wK K K  is the matrix 

with  as its columns. , ,u v wK K K

 
Note that the cross product has to be evaluated first.   The cross product of a scalar with a 
vector is not defined.   Therefore  ( )=u v w u v wK K K K K Ki i× ×   and  ( )=u v w u v wK K K K K Ki i× × . 
Also  

1 2 3

1 2 3

1 2 3

x x x
y y y
z z z

=u v wK K Ki ×  

Proof: 
Expanding down column 1: 

1 2 3
2 3 2 3 2 3

1 2 3 1 1 1
2 3 2 3 2 3

1 2 3

x x x
y y x x x

y y y x y z
z z z z y y

z z z
= + − +

x
 

[ ] ( )
T

T 2 3 2 3 2 3
1 1 1

2 3 2 3 2 3

y y x x x x
x y z

z z z z y y
⎡ ⎤

= + − + =⎢ ⎥
⎣ ⎦

u v wK K Ki i ×  

 
 
 
Geometric interpretations: 
 
The area of the parallelogram ABCD  
defined by vectors ,u vK K  is  
A  =  (base) × (perpendicular height) 
 

( )sinθ= u vK K  
 
Therefore A = u vK K×  
 
and it also follows that the area of triangle ABD  is 1

2 u vK K× . 
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Example 4.3.1    
 
Find the area of the triangle whose vertices are at the points P(0, 2, 1), Q(3, 2, 4)  and  
R(1, 5, 7). 
 
 

[ ]T3 0 3PQ =
JJJG

, [ ]T2 3 3QR = −
JJJG

  and  [ ]T1 3 6PR =
JJJG

 
The cross product of any two of these three vectors may be used to evaluate the area. 
Selecting [ ]T3 0 3PQ= =u

JJJGK  and [ ]T1 3 6PR= =v
JJJGK , 

Repeating some of the work from Example 4.2.8: 
ˆ 3 1

0 3 3 1 3 1ˆ ˆ ˆ ˆˆ ˆ0 3 9 15 9
3 6 3 6 0 3

ˆ 3 6

= = + − + = − −

i

u v ˆ +j i j k i j k

k

K K×  

 
[ ]T 3 31 1

2 2 2 23 3 5 3 9 25 9 43A⇒ = = − − = + + =u vK K×  

 
 
 
 
The scalar triple product also has a geometric interpretation. 
 
A parallelepiped is a six-sided object all six 
of whose faces are parallelograms, with 
pairs of opposite faces being congruent.   It 
can be generated from a cube by repeated 
stretching and shearing parallel to the edges. 
 
The volume of any parallelepiped is the 
product of the area of any face and the 
distance from that face to the opposite face: 
  V = Ah  
 
But the area of the base is just A = u vK K× . 
The height  h  is the magnitude of the projection of  wK  on the normal vector to the base K K :   u v×

h V Ah
⎛ ⎞ ⎛ ⎞× ×

= ⇒ = = × =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟× ×⎝ ⎠ ⎝ ⎠

u v u vw u v w
u v u v

K K K KK K K Ki iK K K K ×w u vK K Ki  

Therefore the volume of the parallelepiped is just the magnitude of the scalar triple 
product of the three vectors that define it. 



MATH 2050 4.3 - The Cross Product Page 4.23 

Example 4.3.2    
 
Find the volume of the parallelepiped defined by the vectors [ ]T1 0 0=uK , 

[ ]T3 1 2=vK  and [ ]T2 3 5=wK .   
 
 

1 3 2
1 3

0 1 3 1 0 0 5 6 1
2 5

0 2 5
= = + − + = −u v wK K Ki × = −  

 
1 1V = = −u v wK K Ki × =  

 
 
 
 
 
Example 4.3.3  (Textbook, page 185, exercises 4.3, question 8) 
 
Another method to find the distance  r  of a point  P  from the 
line through point  Po  with line direction vector d

K
: 

 
Let θ  be the angle between vectors oP P=v

JJJGK  and d
K

. 
 

sinθ=v d v d
K KK K×  

But   sinr θ= vK  
 

oP P
r⇒ =

d

d

JJJG K

K
×

 . 

 
However, if one wishes to find the location of the nearest point  N  on the line to the point  
P, then the projection of 

JJJ
 on doP P
G K

 is required: 
 

o
o o o o o 2proj P PON OP P N OP P P OP

⎛ ⎞
⎜ ⎟= + = + = +
⎜ ⎟
⎝ ⎠

d

d d
d

K

JJJG KJJJG JJJG JJJJG JJJG JJJG JJJG Ki
K  
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