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4.4 Additional Examples for Chapter 4

Example 4.4.1

Prove that the line joining the midpoints of two sides of a triangle is parallel to and
exactly half as long as the third side of that triangle.

We need to prove that DE =3 BC . 8
e 0
BC=BO+0C=0C-0B

. A i
OD =4(OA+0B) and OE =$(0A+0C) E

~ DE-DO+OE-OE-OD — }(OA+0C - OA- OB) - }(0C - 08)-}8C

Example 4.4.2

Find the coordinates of the point P that is one-fifth of the way from A(1, -2, 3) to
B(7, 4, -9).

T

OA=[1 -2 3]", OB=[7 4 -9]

P splits the line segment AB in the ratio r:s =1:4.
The general formula for the location of such a point is

oF - (LJO—A+ [;)@
r+Ss r+Ss

[Page 4.04 of these lecture notes] ©
Therefore
1
(2] 2|2 [ ]
> 3
OR
1 6 11
OP =OA + AP = OA+1AB = -2 +{ 6 =% —4
3 -12 3

Therefore the point P is located at (1_51_%%)
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Example 4.4.3

The points P(2, 3, 1), Q(4,7,2),R(1,5,3)and S are the four vertices of a parallelogram
PQSR, with sides PQ and PR meeting at vertex P. Find the coordinates of point S.

R Ny
Following the path OQS:
Py == ~ ~ T
QS =PR=0R-OP =[-1 2 2] o b
0S =0Q+QS =[4 7 2]" +[-1 2 2] =[3 9 4]

Therefore the point S isat (3, 9, 4).

[One could follow the path ORS instead.]

Example 4.4.4

Find the parametric and symmetric equations of the line L that passes through the points
Q(1, -5, 3) and R(4, 7, -1). Find the distance r of the point P(2,-17, 10) from the line
and find the coordinates of the nearest point N on the line to the point P.

The line direction vector is d = QR =[3 12 4 ]T

Either Q or R may serve as the known point on the line.
Choosing Q, the vector equation of the line is

X 1 3
p=0Q+td = |y |=|-5|+t] 12| (teR)
z 3 -4

The Cartesian parametric equations are
x=1+3t, y=-5+12t, z=3-4t, (teR)
from which the symmetric form follows:
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Example 4.4.4 (continued)

The vector from Q (a known point on the line) to P is

v=QP=[1 -12 7]

The shadow of this vector on the line is the projection

T 177 3T 3 o 3
u_projdv_[LJa_(;j 2 W 12 ||| 12 | = 32144228 o,

H d H2 9+144+16 169
—4 || -4 —4
3 3
o o0=99 - | 1
169
—4 —4
3 1 4
NP = NQ+QP = —0+v =12 |[+| -12 |=| 0
—4 7 3

= T :HWH:\/16+O+ - J25 =5

OR

Triangle PNQ is right-angled at N
= 2 =|v[-|o|f = (1+144+49)—(9+144+16) = 25 = r=5

The location of N can be found from

1 -3 -2
ON = OQ+ON = | -5 |+| -12 |=| -17
3 4 7

[or one may use ON = OP + PN instead]
Therefore the point N is at (-2, =17, 7).
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Example 4.4.5
: X—(-1 - - - _ _
Show that the lines L,: ( ):ylzz zand |_2;X12y0221are
2 -1 3 2 1 1

skew and find the distance between them.

Line L, has line direction vector d, =[ 2 -1 3]
and passes through point P; (-1, 1, 2).

Line L, has line direction vector d, =[2 1 1]
and passes through point P, (1,0, 1).

Clearly d, is not a multiple of d,. Therefore the two lines are not parallel.

OR

The angle between the lines, @, is also the acute angle between the direction vectors of
the lines.

aloaz =2x2 + (—1))(1 +3x1=4-1+3=6
|8, |-a+1+9 = V12, [d,|-Va+1+1 -6

.4, |

W:ﬁ:ﬁ;ﬁil = O0=#0and 0 # x
2

= C0SO = —
d.]

The lines are therefore at an angle of 9 = cosl\E = c0s ' 0.65465... ~ 49.1°

Upon finding a non-zero distance between the lines, we will complete the proof that these
lines are skew.
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Example 4.4.5 (continued)

L B n ﬁg ;
The vector i =d, xd, is orthogonal to both lines. \] 7 2
™~

The length of the projection of 5152 onto n is the
distance r between the lines.

d,
i 2 2 1
A=|j -1 1|=(-1-3)i-(2-6)j+(2+2)k =4| 1
k 3 1 1

PP, =RO+O0OP, =—[-1 1 2] +[1 0 1] =[2 -1 1]

¢ — ol 7| < | PP _‘PP-n i |—2 1-1| 4
Inl 4 ( e L B
443

Therefore the distance between the two non-parallel lines is r = 5 ~ 2.309

and the two lines are skew.

Example 4.4.6

Find two non-zero vectors that are orthogonal to each other and to 0 =[ 320 ]T .

It is easy to construct a non-zero vector v whose dot product with G is zero:
v=[0 0 1] = v.0=0+0+0=0
For the third vector, just take the cross product of the first two vectors:
i 30

2 0]s
0| = I -
01
1

)

W=0U0xV =

3 0f4
01

3
2
0

>

Therefore v=[0 0 1]T and w=[2 -3 O]T.
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Example 4.4.7

Find the Cartesian equation of the plane that passes through the points A(3, 0, 0),
B(2,4,0) and C(1,5, 3) and find the coordinates of the nearest point N on the plane to
the origin and find the distance of the plane from the origin.

Two vectors in the plane are 0=AB=[ -1 4 0 ]T and
v=AC=[-2 5 3].
A normal to the plane is

n

i -1 -2
Uxv=|j 4 5=
k 0 3
12 4
4 5. |-1 =2~ |-1 -2|-
i — j+ k = =31
0 3 0 3 4 5 .

Therefore a normal vector to the planeis A=[ 4 1 1 ]T

a=0A=[3 0 0] = na=3x4+0+0=12

The Cartesian equation of the plane is
Ax+y+z2 =12

The displacement vector for N is the projection of the —
displacement vector of any point on the plane onto the

plane’s normal vector. 7
ON = proj ,OA = OA ﬁ n = Uﬁf‘—?]ﬁ r 4
n
. 3[4\ 4 ” 4 , 4 ©
= | O ||| L= L|=3]1
4°+1°+1 18 3
0 1 1 1 1

|

(3.3.3) and r = |ON | = 24777+ = 2415 - 242

Therefore N is the point
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Example 4.4.8

Find all vectors W that are orthogonal to both u=[1 2 3 ]T and v=[4 3 2 ]T.

One vector that is orthogonal to both G and Vv is

i1 4
— — < 2 3’.‘ l 4’: l 4'\ ~ ~ A
Uxv=|j 2 3|= i — J+ k =-5i +10j — 5k
- 3 2 3 2 2 3
k 3 2

Any multiple of this vector is also orthogonal to both 0 and v.
Therefore the set of vectors W is { [1 21 ]Tt, (teR) }

Check:

Weo =[1 -2 1]'te[1 2 3] =(1-4+3)t=0 Wt
and

Wev=[1 -2 1]t:[4 3 2] =(4-6+2)t=0 Wt

Example 4.4.9

The vertices of a triangle ABC are at A(1, 0, 1), B(-2,-1,1) and C(3, 2, 2) .
Find the angle at vertex A (correct to the nearest degree).

u=AB=[-3 -1 0] = |u]|=+0+1+0=+10

C
v=AC=[2 2 1] = |v|=+V4+4+1=9=3 kﬂ

> av=[-3 -1 0]f2 2 1] =-6-2+0=-8
Let & be the angle at vertex A, then

UeV -8
0 = = = —0.84327...
0 alv] " a0

= 0 =147.4875...° = 147°
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Example 4.4.10 (Textbook, page 179, exercises 4.2, question 18)

Show that every plane containing the points P(1, 2, -1) and Q(2, 0, 1) must also
contain the point R(-1, 6, -5).

PQ=[1 -2 2] and QR=[-3 6 6] =-3[1 -2 2] =-3PQ

Points P and Q are in a plane

= all points on the line through P and Q are in any plane containing P and Q.
But QR = —3PQ = point R ison the line through P and Q

Therefore every plane containing the points P and Q must also contain the point R.

Example 4.4.11 (Textbook, page 180, exercises 4.2, question 44(a))

Prove the Cauchy-Schwarz inequality | Gev

<[allie]-

Let & be the angle between vectors 0 and V.
v = ||a]||v|cose, but |cosg| <1

a-v| < af]v]

U
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Example 4.4.12

Find the point of intersection of the lines X;?’ = y;3 = z—lO and
x—(-1) y-6 z-7
-1 2 3
Line 1: Xx=3+2s, y=3+1s, z=0-1s
Line 2: x==1-1, y=6+2t, z=7+3t

At the point of intersection
X=3+2s=-1-t = 25+t=-4
y=3+s=6+2t = s-2t=3
Z=—5s=7+3t = S+3t=-7

Solving the over-determined linear system for s and t,

2 1|-4 1 -2| 3 1 -2 3
R, &R, R, -2R,
1 2| 3 2 1|-4 5| -10
RS_Rl
1 3|-7 1 3|-7 0 5|-10
-2 3 . 2| 3
— 5/-10 | —2 "~ |0 1]-2
82 0 0 0 0 0| O
1 0|-1
R, +2R,
72500 1]=2 — s=-landt=-2
0 0| O

Unique solution = asingle point of intersection does exist.

Therefore the two lines intersect at the point (1, 2, 1).
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