MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

FINAL EXAMINATION

MATHEMATICS 2050

WINTER 2009

[6]

Solutions by Dr. George (Instructor for Section 4)

1. (a) Use Gaussian elimination to solve the following system of linear equations

$$2x - y + w = 2$$

$$x - 3z + 4w = -1$$

$$-x + y - 3z + 3w = -3$$

$$\begin{bmatrix} 2 & -1 & 0 & 1 & 2 \\ 1 & 0 & -3 & 4 & -1 \\ -1 & 1 & -3 & 3 & -3 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{bmatrix} 1 & 0 & -3 & 4 & -1 \\ 2 & -1 & 0 & 1 & 2 \\ -1 & 1 & -3 & 3 & -3 \end{bmatrix}$$

$$\Rightarrow \left\{ \begin{array}{l} x - 3z + 4w = -1 \\ y - 6z + 7w = -4 \end{array} \right\}, \text{ with } z, w = \text{ free parameters.}$$

 \Rightarrow a two-parameter family of solutions:

$$\left\{
\begin{array}{l}
x = 3s - 4t - 1 \\
y = 6s - 7t - 4 \\
z = s \\
w = t
\end{array}
\right\}, \quad (s \in \mathbb{R}, \ t \in \mathbb{R})$$

[4]

1(a) (continued)

or

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = s \begin{bmatrix} 3 \\ 6 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -4 \\ -7 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -4 \\ 0 \\ 0 \end{bmatrix}, \quad (s \in \mathbb{R}, \ t \in \mathbb{R})$$

Note: if w and x are chosen as the leading variables and y and z as the free parameters, then the solution takes the acceptable equivalent form

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = s \begin{bmatrix} -\frac{3}{7} \\ 0 \\ 1 \\ \frac{6}{7} \end{bmatrix} + t \begin{bmatrix} \frac{4}{7} \\ 1 \\ 0 \\ -\frac{1}{7} \end{bmatrix} + \begin{bmatrix} \frac{9}{7} \\ 0 \\ 0 \\ -\frac{4}{7} \end{bmatrix}, \quad (s \in \mathbb{R}, \ t \in \mathbb{R})$$

1 (b) For which values of k does the system

$$2x - y + 3z = -2$$

$$7y + 2z = 4$$

$$(9-k^2)z = 27-k^3$$

have (i) a unique solution? (ii) no solution? (iii) infinitely many solutions? (Do not find the solutions.)

This system is in triangular form.

It is obvious that this system will lead to a unique solution if and only if $9 - k^2 \neq 0$.

$$9 - k^2 = 0 \implies k = \pm 3$$

If k = 3 then row 3 becomes $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ and the system has a one-parameter family of solutions (infinitely many solutions).

If k = -3 then row 3 becomes $\begin{bmatrix} 0 & 0 & 0 & 54 \end{bmatrix}$ and the system is inconsistent (no solution).

Therefore

- (i) a unique solution for all $k \neq \pm 3$
- (ii) no solution for k = -3
- (iii) infinitely many solutions for k = 3

2. Given the matrices

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -4 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} -2 & 1 \\ -1 & 1 \end{bmatrix},$$

find, if possible:

(a)
$$AB$$
 (b) AC (c) a matrix X such that $DXC^{-1} = D^{-1}$. [2, 1, 4]

(a)
$$AB = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ -9 & 2 \end{bmatrix}$$

(b) AC does not exist

[the following reason need not be given to gain the mark: Examining dimensions: $((2\times3)\times(2\times2))$ has a mismatch in the internal dimensions.]

(c)
$$DXC^{-1} = D^{-1}$$
 $\Rightarrow D^{-1}DXC^{-1}C = D^{-1}D^{-1}C$ $\Rightarrow X = (D^{-1})^2 C$

$$D^{-1} = \frac{1}{-2+1} \begin{bmatrix} 1 & -1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & 2 \end{bmatrix}$$

$$\Rightarrow (D^{-1})^2 = \begin{bmatrix} -1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 3 \end{bmatrix}$$

$$\Rightarrow X = (D^{-1})^2 C = \begin{bmatrix} 0 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -4 & -2 \end{bmatrix}$$
OR
$$\Rightarrow D^{-1}C = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ -1 & 0 \end{bmatrix}$$

$$\Rightarrow D^{-1}C = \begin{bmatrix} -1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ -3 & -2 \end{bmatrix}$$
$$\Rightarrow X = D^{-1}(D^{-1}C) = \begin{bmatrix} -1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -2 & -2 \\ -3 & -2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -4 & -2 \end{bmatrix}$$

3. Find matrix A, given that
$$2A^{T} + \begin{bmatrix} 2 & -1 \\ 4 & 0 \end{bmatrix} = \begin{pmatrix} 5 & 1 \\ -1 & 6 \end{bmatrix} - A^{T}$$
. [5]

$$2A^{\mathsf{T}} + \begin{bmatrix} 2 & -1 \\ 4 & 0 \end{bmatrix} = \left(\begin{bmatrix} 5 & 1 \\ -1 & 6 \end{bmatrix} - A \right)^{\mathsf{T}} \quad \Rightarrow \quad 2A + \begin{bmatrix} 2 & 4 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ -1 & 6 \end{bmatrix} - A$$

$$\Rightarrow 2A + A = \begin{bmatrix} 5 & 1 \\ -1 & 6 \end{bmatrix} - \begin{bmatrix} 2 & 4 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 0 & 6 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

OR

$$2A^{\mathrm{T}} + \begin{bmatrix} 2 & -1 \\ 4 & 0 \end{bmatrix} = \left(\begin{bmatrix} 5 & 1 \\ -1 & 6 \end{bmatrix} - A \right)^{\mathrm{T}} = \begin{bmatrix} 5 & -1 \\ 1 & 6 \end{bmatrix} - A^{\mathrm{T}}$$

$$\Rightarrow 2A^{\mathrm{T}} + A^{\mathrm{T}} = \begin{bmatrix} 5 & -1 \\ 1 & 6 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 4 & 0 \end{bmatrix} \Rightarrow 3A^{\mathrm{T}} = \begin{bmatrix} 3 & 0 \\ -3 & 6 \end{bmatrix}$$

$$\Rightarrow 3A = \begin{bmatrix} 3 & -3 \\ 0 & 6 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$

4. Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -1 \\ 3 & 1 & 1 \end{bmatrix}$$
.

(a) Find
$$A^{-1}$$
. [5]

The matrix of cofactors is

$$C = \begin{bmatrix} + \begin{vmatrix} -2 & -1 \\ 1 & 1 \end{vmatrix} & - \begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix} & + \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} \\ - \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} & + \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} & - \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} \\ + \begin{vmatrix} 1 & 1 \\ -2 & -1 \end{vmatrix} & - \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} & + \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} \end{bmatrix} = \begin{bmatrix} -1 & -4 & 7 \\ 0 & -2 & 2 \\ 1 & 2 & -3 \end{bmatrix}$$

4(a) (continued)

$$\Rightarrow \text{ adj } A = C^{\mathsf{T}} = \begin{bmatrix} -1 & 0 & 1 \\ -4 & -2 & 2 \\ 7 & 2 & -3 \end{bmatrix}$$

Expanding along row 1:

$$\det A = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} = 1 \times (-1) + 1 \times (-4) + 1 \times 7 = 2$$

$$A^{-1} = \frac{\operatorname{adj} A}{\det A} = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \\ -4 & -2 & 2 \\ 7 & 2 & -3 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \\ -2 & -1 & 1 \\ \frac{7}{2} & 1 & -\frac{3}{2} \end{bmatrix}$$

OR

Use Gaussian elimination to find the inverse:

$$\begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & -2 & -1 & 0 & 1 & 0 \\ 3 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 - 3R_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -3 & -2 & -1 & 1 & 0 \\ 0 & -2 & -2 & -3 & 0 & 1 \end{bmatrix}$$

Valid alternative sequences of row operations exist.

[2]

4 (b) Use
$$A^{-1}$$
 to solve the system

$$x + y + z = 1$$

$$x - 2y - z = -1$$

$$3x + y + z = 3$$

$$AX = B$$
 \Rightarrow $X = A^{-1}B$

$$\Rightarrow X = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \\ 4 & -2 & 2 \\ 7 & 2 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 4 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$$

Therefore x = 1, y = 2, z = -2.

4 (c) Let $C = \begin{bmatrix} -3 & 1 & 5 \end{bmatrix}^T$. Use Cramer's rule to find the value of y in the solution of the system AX = C.

$$AX = C \implies y = \frac{\det A_2}{\det A} = \frac{\begin{vmatrix} 1 & -3 & 1 \\ 1 & 1 & -1 \\ 3 & 5 & 1 \\ \hline \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -2 & -1 \\ 3 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & -1 \\ 1 & 1 & 1 \\ 1 & -2 & -1 \\ 3 & 1 & 1 \end{vmatrix}} = \frac{1 \begin{vmatrix} 1 & -1 \\ 5 & 1 \end{vmatrix} - 1 \begin{vmatrix} -3 & 1 \\ 5 & 1 \end{vmatrix} + 3 \begin{vmatrix} -3 & 1 \\ 1 & -1 \end{vmatrix}}{2}$$

$$= \frac{6+8+6}{2} = \frac{20}{2} \qquad \Rightarrow \quad y = \underline{10}$$

[5]

5. (a) Use row operations to show that

$$\begin{vmatrix} a_1 + b_1 & a_2 + b_2 & a_3 + b_3 \\ a_1 - b_1 & a_2 - b_2 & a_3 - b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = -2 \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$LHS = \begin{vmatrix} a_1 + b_1 & a_2 + b_2 & a_3 + b_3 \\ a_1 - b_1 & a_2 - b_2 & a_3 - b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \xrightarrow{R_1 + R_2} \begin{vmatrix} 2a_1 & 2a_2 & 2a_3 \\ a_1 - b_1 & a_2 - b_2 & a_3 - b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$\begin{array}{c|cccc} & R_2 - \frac{1}{2}R_1 & \begin{vmatrix} 2a_1 & 2a_2 & 2a_3 \\ -b_1 & -b_2 & -b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Extracting row factors:

$$LHS = 2 \times (-1) \times \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = RHS$$

Valid alternative sequences of row operations exist, but the above is the most concise.

5 (b) Find det D, given that D is a
$$4 \times 4$$
 matrix and det $(2D) = -32$. [3]

 $det(kA) = k^n det A$ for any $(n \times n)$ matrix A. Here n = 4

$$\Rightarrow$$
 det $(2D) = 2^4 \det D$ \Rightarrow -32 = 16 det D \Rightarrow det $D = \underline{-2}$

6. Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
.

Find the eigenvalues and corresponding eigenvectors of A.

[8]

The eigenvalues λ are the solutions to the characteristic equation $\det(\lambda I - A) = 0$.

$$\begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = 0 \quad \Rightarrow \quad (\lambda - 2)^2 - 1 = 0 \quad \Rightarrow \quad (\lambda - 2)^2 = 1$$

$$\Rightarrow \lambda - 2 = \pm 1 \Rightarrow \lambda = 1 \text{ or } \lambda = 3$$

2 marks

 $\Rightarrow \lambda - 2 = \pm 1 \Rightarrow \underline{\lambda = 1} \text{ or } \underline{\lambda = 3}$ (or solve the quadratic equation $\lambda^2 - 4\lambda + 4 - 1 = 0$).

For each λ , the eigenvectors are the non-trivial solutions to $(\lambda I - A)X = O$.

For $\lambda = 1$:

$$\begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \Rightarrow \qquad -x - y = 0 \quad \Rightarrow \quad y = -x$$

 $\Rightarrow \text{ the 1-eigenvectors are } t \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad (t \neq 0) \quad \left[\text{ or } t \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad (t \neq 0) \right] \quad [3 \text{ marks}]$

For $\lambda = 3$:

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies x - y = 0 \implies y = x$$

$$\Rightarrow \text{ the 3-eigenvectors are } t = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad (t \neq 0)$$
 [3 marks]

6 (b) Diagonalize A. That is, find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$. [3]

Immediately from 6(a),

$$P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

Valid alternatives include

$$P = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}; \qquad P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}; \quad \text{etc.}$$

(c) Use the information from part (b) to calculate A^6 . [3]

$$P^{-1}AP = D$$
 \Rightarrow $A = PDP^{-1}$ \Rightarrow $A^{6} = (PDP^{-1})^{6} = \dots = PD^{6}P^{-1}$

$$P^{-1} = \frac{1}{1+1} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

The alternatives in (b) produce different forms for P^{-1} here.

For the main answer in 6(b) above

$$A^{6} = PD^{6}P^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 729 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 729 & 729 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 730 & 728 \\ 728 & 730 \end{bmatrix} \implies A^6 = \begin{bmatrix} 365 & 364 \\ 364 & 365 \end{bmatrix}$$

OR

$$A^{6} = PD^{6}P^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 729 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 729 \\ -1 & 729 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 730 & 728 \\ 728 & 730 \end{bmatrix} \implies A^6 = \begin{bmatrix} 365 & 364 \\ 364 & 365 \end{bmatrix}$$

[4]

7. Let
$$\vec{\mathbf{u}} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^{\mathsf{T}}$$
 and $\vec{\mathbf{v}} = \begin{bmatrix} 3 & 5 & -2 \end{bmatrix}^{\mathsf{T}}$. [5] Find a vector of length 2 that is perpendicular to both $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$.

A vector that is perpendicular to both $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ is $\vec{\mathbf{u}} \times \vec{\mathbf{v}}$:

$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \begin{vmatrix} \hat{\mathbf{i}} & 1 & 3 \\ \hat{\mathbf{j}} & 2 & 5 \\ \hat{\mathbf{k}} & 1 & -2 \end{vmatrix} = \begin{bmatrix} -9 \\ 5 \\ -1 \end{bmatrix}$$

If the vectors are taken in the opposite order, then the correct vector is $\vec{\mathbf{v}} \times \vec{\mathbf{u}} = \begin{bmatrix} 9 \\ -5 \\ 1 \end{bmatrix}$.

$$\|\vec{\mathbf{u}} \times \vec{\mathbf{v}}\| = \sqrt{(-9)^2 + 5^2 + (-1)^2} = \sqrt{81 + 25 + 1} = \sqrt{107}$$

A unit vector in the desired direction is $\frac{1}{\sqrt{107}}\begin{bmatrix} -9\\5\\-1\end{bmatrix}$ or $\frac{1}{\sqrt{107}}\begin{bmatrix} 9\\-5\\1\end{bmatrix}$

The required vector of length 2 is $\frac{2}{\sqrt{107}}\begin{bmatrix} -9\\5\\-1\end{bmatrix}$ or $\frac{2}{\sqrt{107}}\begin{bmatrix} 9\\-5\\1\end{bmatrix}$

8. Points A(1, 1, 4), B(2,-3, 5), and C(4,-8, 10) are given.

 $\overrightarrow{BA} = \begin{bmatrix} -1 \\ 4 \\ -1 \end{bmatrix} \text{ and } \overrightarrow{BC} = \begin{bmatrix} 2 \\ -5 \\ 5 \end{bmatrix} \implies \cos B = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{\|\overrightarrow{BA}\| \|\overrightarrow{BC}\|} =$

$$\frac{\left[-1 \quad 4 \quad -1\right]^{\mathrm{T}} \cdot \left[2 \quad -5 \quad 5\right]^{\mathrm{T}}}{\sqrt{1+16+1} \cdot \sqrt{4+25+25}} = \frac{-2-20-5}{\sqrt{18}\sqrt{54}} = \frac{-27}{\sqrt{2\times9\times3\times2\times9}} = \frac{-27}{2\times9\sqrt{3}} = -\frac{\sqrt{3}}{2}$$

$$\cos B = -\frac{\sqrt{3}}{2} \qquad \Rightarrow \quad \underline{B = \frac{5\pi}{6}} \quad (=150^{\circ})$$

8(b) Find the area of triangle ABC.

[4]

Area =
$$\frac{1}{2}BA \cdot BC \cdot \sin B = \frac{1}{2}\sqrt{18}\sqrt{54}\sin\left(\frac{5\pi}{6}\right) = \frac{1}{2}\left(3\sqrt{2}\right)\left(3\sqrt{3}\sqrt{2}\right)\frac{1}{2} = \frac{9\sqrt{3}}{2}$$

OR

$$\overrightarrow{BA} \times \overrightarrow{BC} = \begin{vmatrix} \hat{\mathbf{i}} & -1 & 2 \\ \hat{\mathbf{j}} & 4 & -5 \\ \hat{\mathbf{k}} & -1 & 5 \end{vmatrix} = \begin{bmatrix} 15 \\ 3 \\ -3 \end{bmatrix} = 3 \begin{bmatrix} 5 \\ 1 \\ -1 \end{bmatrix}$$

$$\Rightarrow$$
 Area = $\frac{1}{2} \| \overrightarrow{BA} \times \overrightarrow{BC} \| = \frac{1}{2} 3\sqrt{25 + 1 + 1} = \frac{9\sqrt{3}}{2}$

9 (a) Find the point of intersection of the two lines
$$x = -1 - 3t$$
, $y = 2 + 2t$, $z = 3 - t$ and $x = 2 + 5s$, $y = -s$, $z = 4 + 3s$. [5]

At any point of intersection,

$$\begin{cases} x = -1 - 3t = 2 + 5s \\ y = 2 + 2t = 0 - s \\ z = 3 - t = 4 + 3s \end{cases}$$

$$\Rightarrow \begin{cases} y: & 1s + 2t = -2 \\ x: & 5s + 3t = -3 \\ z: & 3s + 1t = -1 \end{cases} \Rightarrow \begin{bmatrix} 1 & 2 & | & -2 \\ 5 & 3 & | & -3 \\ 3 & 1 & | & -1 \end{bmatrix}$$

$$\begin{array}{c|cccc} & R_1 - 2R_2 \\ \hline & R_3 + 5R_2 \end{array} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad s = 0, \ t = -1$$

(unique solution)

$$\Rightarrow$$
 $x = 2 + 0$, $y = 0$, $z = 4 + 0$

Therefore the lines meet at the point (2, 0, 4).

9 (b) Find an equation of the plane containing the two lines of part (a).

[4]

The line direction vectors are $\vec{\mathbf{d}}_1 = \begin{bmatrix} -3 & 2 & -1 \end{bmatrix}^T$ and $\vec{\mathbf{d}}_2 = \begin{bmatrix} 5 & -1 & 3 \end{bmatrix}^T$

A normal vector to the plane containing these two lines is:

$$\vec{\mathbf{d}}_1 \times \vec{\mathbf{d}}_2 = \begin{vmatrix} \hat{\mathbf{i}} & -3 & 5 \\ \hat{\mathbf{j}} & 2 & -1 \\ \hat{\mathbf{k}} & -1 & 3 \end{vmatrix} = \begin{bmatrix} 5 \\ 4 \\ -7 \end{bmatrix} = \bar{\mathbf{n}}$$

The displacement vector to a point on the plane is $\vec{\mathbf{a}} = \begin{bmatrix} 2 & 0 & 4 \end{bmatrix}^T$

$$\vec{\mathbf{n}} \cdot \vec{\mathbf{a}} = \begin{bmatrix} 5 \\ 4 \\ -7 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix} = 10 + 0 - 28 = -18$$

The equation of the plane is $\vec{n} \cdot \vec{p} = \vec{n} \cdot \vec{a}$ or

$$5x + 4y - 7z = -18$$

10. Find the distance from the point P(1, 1, 0) to the plane x + y - z = 1, and find the point Q on the plane which is closest to P.

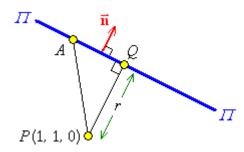
[8]

A normal vector to the plane x + y - z = 1 is $\vec{\mathbf{n}} = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^{\mathrm{T}}$.

A point A on the plane is (1, 0, 0)

$$\Rightarrow \overrightarrow{PA} = \begin{bmatrix} 0 & -1 & 0 \end{bmatrix}^T$$

$$\overrightarrow{PQ} = \operatorname{proj}_{\overline{\mathbf{n}}} \overrightarrow{PA} = \left(\overrightarrow{PA} \cdot \hat{\mathbf{n}} \right) \hat{\mathbf{n}} = \left(\frac{\overrightarrow{PA} \cdot \overline{\mathbf{n}}}{\|\overline{\mathbf{n}}\|^2} \right) \overline{\mathbf{n}}$$



$$= \frac{\begin{bmatrix} 0 & -1 & 0 \end{bmatrix}^{T} \cdot \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^{T}}{1^{2} + 1^{2} + (-1)^{2}} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \frac{-1}{3} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

$$\overrightarrow{OQ} = \overrightarrow{OP} + \overrightarrow{PQ} = \frac{1}{3} \begin{pmatrix} 3 & 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

Therefore the point Q is at $(\frac{2}{3}, \frac{2}{3}, \frac{1}{3})$

and

$$r = \|\overrightarrow{PQ}\| = \frac{1}{3}\sqrt{(-1)^2 + (-1)^2 + 1^2} = \frac{\sqrt{3}}{\underline{3}}$$

Some valid variations are possible.

11. Let $Y = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^T$ and $Z = \begin{bmatrix} -1 & -2 & -1 \end{bmatrix}^T$ be two vectors in \mathbb{R}^3 .

(a) Show that $\{Y, Z\}$ is linearly independent.

[4]

Clearly $Y \neq kZ$ for any scalar k.

Therefore $\{Y, Z\}$ is linearly independent.

OR

Seek non-trivial solutions (s, t) to the homogeneous system sY + tZ = O:

$$\begin{bmatrix} 2 & -1 & | & 0 \\ 1 & -2 & | & 0 \\ 1 & -1 & | & 0 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{bmatrix} 1 & -2 & | & 0 \\ 2 & -1 & | & 0 \\ 1 & -1 & | & 0 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & -2 & | & 0 \\ 0 & 3 & | & 0 \\ 0 & 1 & | & 0 \end{bmatrix}$$

$$\begin{array}{c|c}
R_3 \leftrightarrow R_2 \\
\hline
 & 0 & 1 & 0 \\
0 & 3 & 0
\end{array}
\quad
\begin{array}{c|c}
R_3 - 3R_2 \\
\hline
 & 0 & 0 & 0
\end{array}$$

which clearly has a unique solution s = t = 0 – the trivial solution only. Therefore $\{Y, Z\}$ is linearly independent.

11(b) Determine whether
$$X = \begin{bmatrix} 6 & 5 & -1 \end{bmatrix}^T$$
 lies in $U = \text{span} \{ Y, Z \}$. [4]

Solve X = sY + tZ for s and t:

$$\begin{bmatrix} 2 & -1 & | & 6 \\ 1 & -2 & | & 5 \\ 1 & -1 & | & -1 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{bmatrix} 1 & -2 & | & 5 \\ 2 & -1 & | & 6 \\ 1 & -1 & | & -1 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & -2 & | & 5 \\ 0 & 3 & | & -4 \\ 0 & 1 & | & -6 \end{bmatrix}$$

which is clearly inconsistent (row 3 is 0s + 0t = 14).

Therefore \underline{NO} , $X = \begin{bmatrix} 6 & 5 & -1 \end{bmatrix}^T$ does not lie in $U = \text{span } \{ Y, Z \}$.

11(b) (continued) OR

In \mathbb{R}^3 , X lies in span $\{Y, Z\}$ if and only if $X \cdot Y \times Z = 0$

$$X \cdot Y \times Z = \begin{vmatrix} 6 & 2 & -1 \\ 5 & 1 & -2 \\ -1 & 1 & -1 \end{vmatrix} = (-1) \begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix} - 1 \begin{vmatrix} 6 & -1 \\ 5 & -2 \end{vmatrix} + (-1) \begin{vmatrix} 6 & 2 \\ 5 & 1 \end{vmatrix}$$
$$= -((-4+1) + (-12+5) + (6-10)) = -(-3-7-4) = +14 \neq 0$$

Therefore **NO**, $X = \begin{bmatrix} 6 & 5 & -1 \end{bmatrix}^T$ does not lie in $U = \text{span } \{ Y, Z \}$.

- 12. Do ONE of the following:
 - [7] A parallelogram with sides of equal length is called a rhombus. Use vectors to prove that the diagonals of a rhombus are perpendicular.

Let
$$\vec{\mathbf{u}} = \overrightarrow{AB} = \overrightarrow{DC}$$
 and $\vec{\mathbf{v}} = \overrightarrow{BC} = \overrightarrow{AD}$

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \vec{\mathbf{u}} + \vec{\mathbf{v}}$$

$$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD} = -\vec{\mathbf{u}} + \vec{\mathbf{v}}$$

$$\Rightarrow \overrightarrow{AC} \cdot \overrightarrow{BD} = (\vec{\mathbf{v}} + \vec{\mathbf{u}}) \cdot (\vec{\mathbf{v}} - \vec{\mathbf{u}})$$

$$= \vec{\mathbf{v}} \cdot \vec{\mathbf{v}} + \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} - \vec{\mathbf{v}} \cdot \vec{\mathbf{u}} - \vec{\mathbf{u}} \cdot \vec{\mathbf{u}} = ||\vec{\mathbf{v}}||^2 - ||\vec{\mathbf{u}}||^2$$

But ABCD is a rhombus $\Rightarrow AD = AB \Rightarrow \|\bar{\mathbf{v}}\| = \|\bar{\mathbf{u}}\|$

Therefore $AC \cdot BD = 0 \implies$ the diagonals are perpendicular.

12 (b) Let A and B be $n \times n$ invertible matrices. Show that if A + B is invertible, then $A^{-1} + B^{-1}$ is also invertible. (Hint: Consider the product $A^{-1}(A + B) B^{-1}$.)

A and B are invertible matrices \Rightarrow A^{-1} and B^{-1} exist.

$$A^{-1}(A+B)B^{-1} = (A^{-1}A+A^{-1}B)B^{-1} = IB^{-1} + A^{-1}BB^{-1} = B^{-1} + A^{-1}BB^{-1}$$

Method 1:

$$\Rightarrow \det\left(A^{-1} + B^{-1}\right) = \det\left(A^{-1}\left(A + B\right)B^{-1}\right) = \det A^{-1} \cdot \det\left(A + B\right) \cdot \det B^{-1}$$

But all three matrices A^{-1} , B^{-1} and (A+B) are invertible

$$\Rightarrow$$
 det A^{-1} , det $(A+B)$ and det B^{-1} are all non-zero

$$\Rightarrow$$
 $\det A^{-1} \cdot \det (A+B) \cdot \det B^{-1} \neq 0 \Rightarrow \det (A^{-1}+B^{-1}) \neq 0$

Therefore $(A^{-1} + B^{-1})$ is also invertible.

Method 2:

(A+B) is invertible \Rightarrow $(A+B)^{-1}$ exists

$$(A^{-1}(A+B)B^{-1})^{-1} = (B^{-1})^{-1}(A+B)^{-1}(A^{-1})^{-1} = B(A+B)^{-1}A \text{ clearly exists}$$
But $(A^{-1}(A+B)B^{-1})^{-1} = (A^{-1}+B^{-1})^{-1}$

Therefore $(A^{-1} + B^{-1})$ is also invertible.

Note that a general proof is required - it is **not** sufficient to show that $(A^{-1} + B^{-1})$ is invertible for some particular choice of matrices A and B.

G.H. George

2009 June 5, revised 2016 November 21

return to the index of solutions