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1.A
Examples for the Sketching of Parametric Curves

A curve in 
[image: image32.png]


 is a one-dimensional object.   To locate any point on that curve requires the value of just one parameter (a real number).   The Cartesian parametric equations of any curve are therefore 
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,  where  t  is any real number.

The Cartesian vector parametric equation is 



[image: image3.wmf](

)

(

)

(

)

(

)

ˆˆ

ˆ

txtytzt

=++

rijk

v

,  where  t  is any real number.

If the parameter t is the time, then r(t) describes the location of a particle at any time t.   

The velocity of the particle is just
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The acceleration is
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Example 1.A.1

Sketch the curve in 
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whose Cartesian equation in parametric form is 

x = t cos t ,   y = t sin t
Example 1.A.1   (continued)
Example 1.A.2

The parametric form of the Cartesian equation of a curve in 
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 is 
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(a)
Sketch the curve.

(b)
What happens to the principal unit tangent 
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 at the origin? 

Example 1.A.2   (continued)
Example 1.A.3

For the curve whose Cartesian equation in parametric form is 
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(a)
Find the tangents at the point  (x, y) = (3, 0).

(b)
Sketch the curve. 

Example 1.A.3   (continued)
Example 1.A.3   (continued)
Example 1.A.4

Determine the shape of the curve whose Cartesian equation in parametric form is 
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Examine the projections of the curve onto the three coordinate planes:

In the x-y plane  z = 0  and 

Example 1.A.4   (continued)

Modified Maple plot: 

[image: image12.png]



A Maple file that generates a plot of this helix is available from the course web site, in the programs directory: 

"http://www.engr.mun.ca/~ggeorge/2422/programs/".

1.B
Tangential and Normal Components of Velocity and Acceleration

The tangent vector to a curve r(t)  is  
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If the parameter t is the time, then the tangent vector is also the velocity vector v(t).

The tangential component vT of velocity v(t) is just the speed v(t).   

There is no component of velocity in the normal plane.

The speed v(t) is a scalar quantity:  
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But the arc length (distance measured along the curve)  s  is defined by 
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Therefore the speed 
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and the unit tangent vector is


[image: image17.wmf]ˆ

ddsd

vdtdtds

===¸=

Tvrr

T

T

v

vv

v

v

.

As seen in Example 1.A.2 above, 
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 is ill-defined where 
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As a curve travels through 
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, its tangent vector points straight ahead, defining a normal plane at right angles to that tangent vector.
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Imagine that a roller coaster car is travelling along the curve, with the front in the direction of travel and oriented so that the side doors are in the direction in which the car is instantaneously turning.   Then the direction in which 
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 is changing defines the principal unit normal 
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, (except where the curve is straight or has a point of inflexion).

By definition, the magnitude of any unit vector is 1 and therefore is absolutely constant.   Only the direction of a unit vector can change.   The natural parameter to use for any curve (though usually not the most convenient in practice) is the distance travelled along the curve: the arc length s.   Therefore define the principal normal vector to be the derivative of the unit tangent vector with respect to arc length:
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from which it follows that the unit principal normal vector is 
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The magnitude of the principal normal vector is a measure of how sharply the curve is turning.   It is therefore the curvature, 
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Example 1.B.1

Find the unit tangent, normal and binormal vectors everywhere on the helix 
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We know that the velocity vector is purely tangential:  
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The acceleration vector is therefore
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But  
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Example 1.B.2  

Find the tangential and normal components of velocity and acceleration everywhere on the helix 
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