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4.
Second Order Linear Ordinary Differential Equations  

The general second order linear ordinary differential equation is of the form 
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Of the second (and higher) order ordinary differential equations, only linear equations with constant coefficients will be considered in this chapter:
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4.1
Complementary Function 

The homogeneous equation associated with this ODE is 
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The principle of superposition of solutions of the homogeneous equation is valid because it is linear.   That is, if  y = u(x)  and   y = v(x)  are both solutions of the homogeneous ODE, then so also is   y = c1 u(x)  +  c2 v(x) , where   c1  and   c2  are any constants.

Adding any solution of the homogeneous ODE to a particular solution of the original ODE generates another solution of the original ODE.

Thus the general solution (abbreviated as G.S.) of 
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can be partitioned into two parts: 

the complementary function (C.F., which is the general solution of the associated homogeneous ODE) and a particular solution (P.S.). 

If   y = e(x  is a solution to the homogeneous ODE, then 

from which the auxiliary equation (A.E.) follows: 

(2  +  P (  +  Q  =  0

[The choice of   y = e(x  as a trial solution to the homogeneous ODE is justified later, on page 4-08, when a more general method for finding the complementary function is introduced.]

The solution of the auxiliary equation  ( 2  +  P (  +  Q  =  0  is 

Distinct roots ((1 ( (2)  (  the complementary function is 

[The case of equal roots will be dealt with later, on page 4.07 .]

Example 4.1.1   

Solve the differential equation

y"  +  3y'  (  4y  =  0

The auxiliary equation is

The complementary function (which is also the general solution) is 

Checking the solution: 

Example 4.1.2   

Solve

y"  (  2y'  +  2y  =  0

In general, when the roots of the auxiliary equation are a complex conjugate pair of values,  (  =  a ± bj ,   then the complementary function is 
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(where the arbitrary constants are related by  c3  =  c1  +  c2  and   c4  =  j (c2  (  c1) )

or

yC(x)  =  A eax cos(bx ( ()
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or   

yC(x)  =  A eax sin(bx ( ()
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Note that, for an auxiliary equation of this type, with real coefficients, where the solution is constrained to be real, the arbitrary constants c3  and c4  are both real, but c1  and c2  often are not.   For this reason, the forms involving the trigonometric functions are usually preferred.

Example 4.1.3   

A spring, that is not at its natural length, experiences a restoring force  R  that is proportional to the extension  s  beyond the natural length and is directed towards the equilibrium position.   In the absence of friction, this would lead to undamped simple harmonic motion.   Let us suppose that there is also a friction force  D  that is proportional to the speed and acts in the opposite direction to the velocity.
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Restoring force proportional to displacement   (  

Friction (drag) proportional to speed  ( 

Newton’s second law of motion:

Therefore the ODE governing the motion of the spring is 

Example 4.1.3   (continued)

Suppose that  m = 1 kg, b = 6 kg s−1 , c = 25 kg s−2  and that the spring begins at its equilibrium position, but moving at 2 m s−1 to the right, so that s(0) = 0 and v(0) = 2, then the ODE becomes

Note that if  b = 0  (no friction at all), then the system is totally undamped and exhibits simple harmonic motion:

s(t)  =  A sin (kt ( ()
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The General Spring Problem


[image: image10.wmf]2

2

0

dsbdsc

s

dtmdtm

++=


Case 1:
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λ  =  
Case 2:
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λ  =  








    or
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Case 3:
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λ  =   

Complementary Function when the Auxiliary Equation has Equal Roots 

λ 1  =  λ 2 (=  λ)     (   the ODE becomes


y"  −  2λ y'  +  λ 2 y  =  0

One solution to this equation is  C1 eλx  

We require another solution that is independent of this one (so that there will be two distinct arbitrary constants of integration in the complementary function).

Try   f (x)  =  C2 x eλx   

[This second form arises naturally from the operator method, on page 4.08.]

Then

Example 4.1.4  

Solve 

y"  (  6y'  +  9y  =  0

The Operator Method 

The homogeneous ordinary differential equation with constant coefficients,   
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can also be written, using differential operators, in the form 
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Justification: 

The second order ODE can therefore be re-written as a linked pair of first order linear ordinary differential equations [the method of reduction of order]:
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(A)

where  
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Solution:

Operator Method (continued) 

Operator Method (continued) 

Summary for the Complementary Function:

ODE:

y"  +  P y'  +  Q y  =  0 

A.E.:

λ 2  +  P λ  +  Q  =  0 

λ  real and distinct     
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λ  real and equal    
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λ  complex conjugate pair 
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4.2
Particular Solution (Undetermined Coefficients)

The general solution to 


[image: image21.wmf](

)

x

R

y

Q

dx

dy

P

dx

y

d

=

+

+

2

2


is the sum of the complementary function and any one solution (the particular solution) that we can find to the original inhomogeneous ODE.

If the function  R(x)  does not contain any part of the complementary function, then assume that the particular solution  yP(x)  is of the same form as  R(x).

Example 4.2.1   

Find the general solution of the ODE   
y"  +  2y'  −  3y  =  x2  +  e2x  .

A.E.:


C.F.:
 
P.S.:
R(x)  contains neither e−3x nor ex .

R(x)  is the sum of a quadratic function and e2x .

Therefore try the sum of a quadratic function and a multiple of e2x ,

where all four coefficients are to be determined.


yP  =  a x2  +  b x  +  c  +  d e2x  

Example 4.2.1   (continued)

Matching coefficients:

G.S.:
y(x)  =  yC(x)  +  yP(x)  

Therefore 

General Method:  

The general solution to 
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is the sum of the complementary function and any one solution (the particular solution) that we can find to the original inhomogeneous ODE.

If the function  R(x)  does not contain any part of the complementary function, then assume that the particular solution  yP(x)  is of the same form as  R(x).

If  R(x) = ekx , 

  then try   yP = c ekx , with  c  to be determined. 

If  R(x) = (a polynomial of degree n), 

  then try yP = (a polynomial of degree n), with all (n + 1) coefficients to be determined.

If  R(x) = (a multiple of  cos kx  and/or  sin kx), 

  then try yP = c cos kx + d sin kx   , with  c  and  d  to be determined. 

This method can be extended to cases where 

R(x) =  (a sum and/or product of the functions above).

But:
if part (or all) of yP is included in the C.F., then multiply yP by  x.

Example 4.2.2 
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Consider a model of the simple series RLC circuit, where the constants  R, L, C  are the resistance, inductance and capacitance respectively,  E(t)  is the applied electromotive force,  t is the time and  I(t)  is the resulting current.

Examine the voltage drops around the circuit:
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and note that 
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Example 4.2.2  (continued)

Particular solution

If   E(t)  =  Eo  (constant), then 

Suppose that the e.m.f. is sinusoidal, so that   E(t)  =  Eo sin ωt , then
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P.S.:
Try


yP  =  a sin ωt  +  b cos ωt  

(
yP' =  −bω sin ωt  +  aω cos ωt   

(
yP" =  −aω2 sin ωt  −  bω2 cos ωt 
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Example 4.2.2  (continued)

Therefore the particular solution is 
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which is a steady-state sinusoidal response to the sinusoidal electromotive force, but with a phase difference of 
[image: image35.wmf](
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The total current is then 
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As a specific example, if  E(t)  =  17 sin 2t,  R  =  120 Ω,  C  =  1 mF  and  L  =  10 H, then it can be shown that 
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The transient current, 
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, dies away very quickly.   

Its magnitude falls permanently to under 1% of the total current in less than a second.

The values of the two arbitrary constants can be found from the initial conditions, but, given that the complementary function becomes negligible in a very short time, one often does not try to evaluate them. 

Example 4.2.3 

Find the complete solution of the ODE 

y"  +  2 y'  +  y  =  e(x    ,    y(0) = y' (0) = 1

Example 4.2.3   (continued) 

Note that a complete solution requires additional information (often in the form of initial conditions).   Two pieces of information are needed in order to evaluate both arbitrary constants of integration.   However, do not substitute these conditions into the complementary function; wait until the general solution has been obtained.

4.3
Particular Solution (Variation of Parameters)  

The method of variation of parameters is a more general method for finding the particular solution.   It is successful even in some cases where the method of undetermined coefficients fails.   However, where both methods are available, the method of undetermined coefficients is generally faster to use.

If the complementary function for the ODE 
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is   yC(x)  =  C1 y1(x)  +  C2  y2(x) , 

then the particular solution is 

yP(x)  =  u(x) y1(x)  +   v(x) y2(x) ,

where the functions  u(x) and v(x)  need to be determined.

We need two constraints in order to pin down the functional forms of  u(x) and v(x).

One constraint is that  u(x) y1(x)  +   v(x) y2(x)  be a particular solution of the ODE.

We have considerable freedom as to what the other constraint will be.


yP  =  u y1  +   v y2   

Impose our “free” constraint,   

Define the Wronskian function  W(x)  to be
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together with the associated determinants
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then Cramer’s rule yields solutions for  u' and v' :
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Therefore a particular solution is   yP  =  u y1  +   v y2 , where
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Note that we can ignore the arbitrary constants of integration in both integrals, because A y1  and  B y2  are both solutions of the homogeneous ODE and can therefore be absorbed into the complementary function.

Example 4.3.1   (identical to Example 4.2.1) 

Find the general solution of the ODE   
y"  +  2y'  −  3y  =  x2  +  e2x  .

Example 4.3.1   (continued) 

Particular Solution by Variation of Parameters:

Example 4.3.1   (continued) 

Example 4.3.2    

Here is a case that cannot be solved by the method of undetermined coefficients: 

y" + y  =  tan x
R(x) = tan x  is not one of the standard forms.

Example 4.3.2    (continued) 

Example 4.3.3    

Use the variation of parameters method to find the particular solution, then find the general solution of the ODE

y"  −  2y'  +  y  =  ex
Example 4.3.3    (continued) 

Note:

Using the method of undetermined coefficients, 

R(x)  =  ex ,  but  ex  and  x ex  are both in the complementary function.

Therefore the trial function for the particular solution is   yP  =  c x2 ex .

Upon substituting this into the ODE, we find  c  =  1/2 .

Modified Method of Undetermined Coefficients 

If part of the complementary function,  y1, is included in the function  R(x), then try 

yP  =  f (x) y1  as a particular solution.   Substitute into the ODE and solve for f (x).

Example 4.3.3 (again) 

y"  −  2y'  +  y  =  ex
yC  =  (Ax + B) ex 

Try
yP  =  f (x) ex 

Check on the general solution: 
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(

4.4
Higher Order Linear Ordinary Differential Equations 

The nth order ordinary differential equation 
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can be solved as follows.

Form the auxiliary equation 


(n  +  a1(n(1 + ... +  an(2(2 +   an(1(1 + an  =  0

Find all n values for  (.

Form the complementary function  yC, which will be a linear combination of  
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 (except for repeated roots).   

Complex conjugate pairs can be re-written in terms of sine and cosine functions.

Find a particular solution yP (by inspection, undetermined coefficients, or variation of parameters, as extended to this higher order equation).

Write down the general solution   y  =  yC  +  yP.

n  initial and/or boundary conditions will be needed at this stage to evaluate all of the n arbitrary constants of integration.

Example 4.4.1  
Find the general solution of
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Auxiliary equation: 


( 5 + 2( 4 ( 3( 3 ( 4( 2 + 4(  =  0

Example 4.4.1  (continued) 
[Cauchy-Euler ODEs will not be covered in this course.]
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