ENGR 2422 Engineering Mathematics 2 

Brief Notes on Chapter 1

1.1
Lines and Planes
A plane is a two dimensional object.

The orientation of a plane in 3 is determined by any non-zero normal vector n.   Knowledge of the position vector  a  to any point  (xo, yo, zo) on the plane then fixes its position.   The general point (x, y, z) with position vector  r  is also on the plane if and only if 

r•n = a•n
(which is the vector equation of the plane).

If the Cartesian components of  n  are  (A, B, C), then the Cartesian equation of the plane is 



      Ax + By + Cz + D = 0

(where  D = a•n = (Axo + Byo + Czo) ).

Given three non-collinear points A, B, C in a plane, more vector equations for the plane are:
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where  R  is the general point  (x, y, z); and the two-parameter vector form 

r  =  a  +  s u  +  t v ,

where  s and t are any real numbers, a is any one of 
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 and u and v  are any two of 
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A line is a one dimensional object.

The orientation of a line is determined by any non-zero tangent (or direction) vector v.   Knowledge of the position vector  a  to any point  (xo, yo, zo) on the line then fixes its position.   The general point (x, y, z) with position vector  r  is also on the line if and only if 

r  =  a  +  t v ,

the vector parametric form, where  t is any real number.

The symmetric Cartesian equation of the line is 
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(except when one or more of  v1, v2, v3 are zero), 

where  v1, v2, v3, are the Cartesian components of the tangent vector v.

The angle   between any two lines is also the angle between their direction vectors:
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1.2
Polar Coordinates (not in 2004 Winter – covered in ENGR 1405)

If  (r, )  is a pair of polar coordinates for a point not at the pole, then so are

(r,   + 2n )  and  (r,   + (2n+1) ).

(0, )  is at the pole for any value of .

Conversion between polar and Cartesian: 
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If  x < 0 and y > 0 (2nd quadrant), then


  =  tan1 (y / x) + 
If  x < 0 and y < 0 (3rd quadrant), then


  =  tan1 (y / x)  
If  x > 0 then 


  =  tan1 (y / x)

A point is on a curve  r = f ()  if and only if at least one member of the set 

{ (r,   + 2n )  and  (r,   + (2n+1) ) }

satisfies the equation r = f ().

The slope at any point on a curve, whose equation  r = f ()  is expressed in the polar parametric form   (x, y) = (f () cos  ,  f () sin  ),  is 
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If  r ( 0  but 
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(not 0) as ( o , then the line = o is a tangent to the curve at the pole.

To sketch a polar curve, divide the range of values of   into intervals at whose endpoints one or more of the following is true:


r = 0


r becomes undefined

or
dr / d = 0 (or undefined)

Then follow the behaviour of  r  as   increases inside each interval.

The arc length along the curve  r = f ()  from     to    is 


[image: image10.wmf]ò

÷

ø

ö

ç

è

æ

+

=

b

a

q

q

d

d

dr

r

L

2

2


[Be careful to take the positive square root throughout the range of integration.]

The area swept out by the radius vector is 
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Radial and Transverse Components of Velocity and Acceleration 

(not in 2004 Winter – covered in ENGR 1405)

Let the unit vectors at a point in (2 in the radial and transverse directions be 
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If  t  represents time, then the velocity is 
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The radial component of velocity is  
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The transverse component of velocity is  
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The radial component of acceleration is  
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The transverse component of acceleration is  
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For future reference in other courses (but not required in ENGR 2422), 

in spherical polar coordinates (r, (, () in (3 :
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  and 
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1.3
Area, Arc Length and Curvature 

The area  A  of a region in (2 bounded by the lines y = 0, x = a, x = b, (a < x < b) and the curve  y = f (x)  (with  f (x) ( 0) is 
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If the position on the curve is expressed parametrically as (x(t), y(t)), then this formula becomes    
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, where x(ta) = a  and  x(tb) = b.

When the position of a point on a curve in (3 is given as a vector function of one scalar parameter, r(t), then the tangent vector is 
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   and the unit tangent vector is    
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These vectors point in the direction in which the parameter t  is increasing.

If  t  is time, then  v = T  is the velocity and  v = T = | T |  is the speed.

The distance travelled along the curve is the arc length  s . 
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so that the element of arc length is  
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If  t  is time, then 
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  is the speed.

The length L along a curve from a point where the parameter value is t0 to a point where the parameter value is t1  is
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The principal normal vector N is the rate of change of the unit tangent vector with respect to the distance travelled along the curve:
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 and hence that T and N must be orthogonal vectors.

The magnitude of the principal normal vector is the curvature:
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In terms of the displacement vector r(t) and denoting differentiation with respect to the parameter  t  by the overdot notation, another formula for the curvature is 
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The radius of curvature is the reciprocal of the curvature:  
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At any point on a curve, an orthonormal basis for (3 can be constructed, using the unit tangent, principal unit normal and unit binormal vectors, with 
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1.4
Classification of Conic Sections  (simplest cases only)

The eccentricity  e  is a parameter related to the slope of the plane relative to the cone.   

	e
	Type
	Standard equation
	Location, other details

	e = 0
	circle
	x2 + y2 = r2
	centre  O, radius r

	0 < e < 1
	ellipse
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	centre  O, semi-major axis a,

semi-minor axis b = a((1(e2),
foci at (±ae, 0)

	e = 1
	parabola
	y2 = 4ax
	vertex at O, focus at (a, 0)

	e > 1
	hyperbola
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	centre  O, vertices ((a, 0),

asymptotes  y  =  ( bx / a,

foci at (±ae, 0)

	e = (2
	rectangular

hyperbola
	xy = k
	centre  O, axes are asymptotes

	Degenerate conic sections (the plane passes through the apex of the cone)

	0 ( e < 1
	point
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	at O

	e > 1
	line pair
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	through O,  y  =  ( bx / a


1.5
Classification of Quadric Surfaces  (simplest cases only)
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:
Ellipsoid   (Axis lengths   a ,  b ,  c )  
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:
Hyperboloid of One Sheet  
(Ellipse axis lengths   a ,  b ; 

aligned along the  z axis)  
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:
Hyperboloid of Two Sheets 
(Ellipse axis lengths   b ,  c ; 

aligned along the  x axis)
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:
Elliptic Paraboloid   

(Ellipse axis lengths   a ,  b ; 

aligned along the  z axis)  
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:
Hyperbolic Paraboloid   
(Hyperbola axis length   a ; 

aligned along the  z axis)  

Degenerate Cases:  
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	Point
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	Hyperbolic Cylinder
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	Elliptic Cone
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	Intersecting Plane Pair

	
[image: image52.wmf]1

2

2

2

2

2

2

-

=

+

+

c

z

b

y

a

x


	Nothing
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	Parabolic Cylinder
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:
	Parallel Plane Pair
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	Line
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 1.6
Generating the Equation of a Surface of Revolution   

If the curve  y = f (x)  is rotated once about the line  y = c, then the equation of the surface in (3 generated by this revolution is

(y ( c)2  +  z2  =  (f (x) ( c)2
The curved surface area (excluding the circular cross-sections at both ends) of this surface of revolution, between  x = a and x = b, is 
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1.7
Hyperbolic functions and their comparison to trigonometric functions   

Trigonometric identities
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tan x = sin x / cos x 

sec x = 1 / cos x 

csc x = 1 / sin x 

cot x = 1 / tan x
cos ((x)  =  + cos x 

sin ((x)  =  ( sin x 

tan ((x)  =  ( tan x 

cos2x + sin2x  =  1

sec2x  =  1 + tan2x 

csc2x  =  1 + cot2x
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cos (A+B) = cos A cos B ( sin A sin B 

cos 2x = cos2x ( sin2x 

 
 =  2 cos2x ( 1  =  1 ( 2 sin2x 

sin (A+B) = sin A cos B + cos A sin B 

sin 2x  =  2 sin x cos x

Hyperbolic function identities
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tanh x = sinh x / cosh x 

sech x = 1 / cosh x 

csch x = 1 / sinh x 

coth x = 1 / tanh x
cosh ((x)  =  + cosh x 

sinh ((x)  =  ( sinh x 

tanh ((x)  =  ( tanh x 

cosh2x ( sinh2x  =  1

sech2x  =  1 ( tanh2x 

csch2x  =  coth2x ( 1
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cosh (A+B) = cosh A cosh B + sinh A sinh B 

cosh 2x = cosh2x + sinh2x 

 
 =  2 cosh2x ( 1  =  1 + 2 sinh2x 

sinh (A+B) = sinh A cosh B + cosh A sinh B 

sinh 2x  =  2 sinh x cosh x
Also:
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1.8
Integration by Parts 
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Tabular shortcut for 
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See the examples done in class and on problem sets.

Some forms that can be obtained from integration by parts: 
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1.9
Leibnitz Differentiation of an Integral  
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Special cases:
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