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Brief Notes on Chapter 2





2.1	Partial Derivatives





If  f  is a function of the independent variables x, y and z, then the rate of change of f with respect to one of the independent variables (in a slice through (3 in which the other two independent variables are constant) is given by the appropriate partial derivative:
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or
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The definition can be extended to functions of any number of variables.





The usual rules and techniques of differentiation (product rule, quotient rule, implicit, logarithmic, etc.) extend to partial differentiation in an obvious way.





Examples: 


1.
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2.
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2.2	Higher Derivatives 





Examples of higher order partial derivatives include
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Clairaut’s theorem: 


If, on a disc D containing the point (a, b) the function f is defined and the partial derivatives  fxy and fyx are both continuous, (which is the case for most functions of interest), then


fxy(a, b)  =  fyx(a, b)


that is, the order of differentiation doesn’t matter.





One of the most important partial differential equations involving second partial derivatives is Laplace’s equation, which arises naturally in many applications, including electrostatics, fluid flow and heat conduction:
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or its equivalent in (3:
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2.3	Differentials and the Chain Rule 





If  z =  f (x, y)  where  x and y  are both functions of  t only, then 
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More generally, for  z  =  f (x1(t1, t2, ... , tm), x2(t1, t2, ... , tm), ... , xn(t1, t2, ... , tm) ), 
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To use the general form of the chain rule, follow every path from  z  to the dependent variable  tj  via all of the  xi  variables.





Example 1:


u = xy + yz + zx,   x = st,   y = est,   z = t2 .    Find  us  in terms of s and t only.
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		=  t ( t(s + t) + (1 + t2)est) 


This derivative could also be found directly by replacing  x, y and z  by the respective functions of  s and t  before differentiating  u.


Note that there is no need to find  �EMBED Equation.DSMT4��� because  z  is not a function of  s.





Differentials may be used to estimate changes in  f  caused by small changes in the independent variables  xi.





Example 2:


If the errors in measuring a 30 cm ( 24 cm rectangle are at most 0.1 cm in each of length and width, then the maximum error in the area  A = LW  is approximately
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[The exact value is 5.41 cm2.]


The maximum relative error is approximately 
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Implicit functions:


If  z  is defined implicitly as a function of  x and y  by   F (x, y, z)  =  c , then


dF  =  Fx dx  +  Fy dy  +  Fz dz  =  0
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Example 3:
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Curves of Intersection 





Example 4:


Find both partial derivatives with respect to  z  on the curve of intersection of the sphere centre the origin, radius 4, and the circular cylinder, central axis on the y-axis, radius 3.





Sphere:	f  =  x2 + y2 + z2  =  16


Cylinder:	g  =  x2    +    z2  =  9


(		df  =  2x dx  + 2y dy  + 2z dz  =  0  


and		dg  =   2x dx       + 2z dz  =  0  


which leads to the linear system 
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Therefore
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[The intersection is the pair of circles   x2 + z2  =  9,   y  =  (4 .


Because  y  never changes on each circle,  x is actually a function of  z only.]





�
2.4	The Jacobian   





A transformation from one orthogonal coordinate system (x, y, z) to another, (u, v, w), often leads to a need to know how the [differential] volume element  dV = dx dy dz transforms into the new coordinate system.   The relationship is 
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where �EMBED Equation.DSMT4��� is the Jacobian.


The two dimensional equivalent is
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where �EMBED Equation.DSMT4���.


The above is the explicit method for determining the Jacobian of the transformation.


It requires all of the old coordinates (x, y, z) to be known as explicit functions of the new coordinates (u, v, w).





The implicit method can be used even when only an implicit relationship between  (x, y, z) and (u, v, w) is known: 


Let (x, y, z) and (u, v, w) be related by


f (x, y, z, u, v, w)  =  c1  


g (x, y, z, u, v, w)  =  c2  


h (x, y, z, u, v, w)  =  c3  


then


df  =  fx dx + fy dy + fz dz + fu du + fv dv + fw dw  =  0 


dg  =  gx dx + gy dy + gz dz + gu du + gv dv + gw dw  =  0 


dh  =  hx dx + hy dy + hz dz + hu du + hv dv + hw dw  =  0 


which leads to the matrix equation
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where  �EMBED Equation.DSMT4���
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The Jacobian is the magnitude of the determinant of the matrix  A(1B .


Also   det (A(1B) = det B / det A .





For a transformation from Cartesian to plane polar coordinates in (2, 
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For cylindrical polar coordinates in (3,
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For spherical polar coordinates in (3,
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Explicit method for plane polar coordinates:


x  =  r cos ( ,    y  =  r sin (
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=  r cos2(  +  r sin2(  =  r .





Implicit method for plane polar coordinates:


f  =  x  (  r cos (  =  0    (   df  =  dx  (  cos ( dr  +  r sin ( d(  =  0


g  =  y  (  r sin (  =  0    (   dg  =  dy  (  sin ( dr  (  r cos ( d(  =  0 
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2.5	The Gradient Vector   





When  F(r)  is a scalar function of position (x, y, z) in (3 and all coordinates are, in turn, functions of a single parameter t, then the chain rule becomes 
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and
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(F is the gradient vector of the scalar function F.


(  is the gradient operator.    (The symbol ( is pronounced “nabla” or “del”.)





Let  â  be the unit vector in the direction of a non-zero vector  a , (so that  a = aâ).   


Then the rate of change of  F  at point  Po  in the direction of  a  is the directional derivative 
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Applications of the Directional Derivative and the Gradient:





(1)    The directional derivative  D  at the point Po = (xo, yo, zo) is maximized by choosing


	a  to be parallel to  (F at Po, so that �EMBED Equation.DSMT4���.





(2)  	 A normal vector to the surface F(x, y, z) = c at the point Po = (xo, yo, zo) is
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(3)  	The equation of the line normal to the surface F(x, y, z) = c   at the point   


	Po = (xo, yo, zo)  is �EMBED Equation.DSMT4���





(4) 	The equation of the tangent plane to the surface F(x, y, z) = c   at the point 


	Po = (xo, yo, zo)  is  �EMBED Equation.DSMT4���	 


(5) 	If the point   Po = (xo, yo, zo) lies on both of the surfaces F(x, y, z) = c  and 


	G(x, y, z) = k, then the angle of intersection (  of the surfaces at the point is given 	by
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If  ((r)  is the potential function for some force F(r), then 


F  =  ((  (if like charges or masses repel;  F  =  (((  if like charges or masses attract).


For a central force law  ( = k rn  it follows that   �EMBED Equation.DSMT4���.


 


�
2.6	Maxima and Minima   





For a function  f (x, y)  defined on some domain  D  in (2, the point  P(xo, yo)  is a critical point [and the value  f (xo, yo) is a critical value] of  f  if


1)	P is on any boundary of  D;  or


2)	f (xo, yo) is undefined;  or


3)	fx and/or  fy is undefined at P;  or


4)	fx and  fy are both zero at P ((  (f = 0  at P).





To determine the nature of a critical point:


1)	Examine the values of  f  in the neighbourhood of P;  or


2)	[First derivative test:]  Examine the changes in  fx and  fy  at P;  or


3)	Use the second derivative test:


At all points (a, b) where  (f = 0 , find all second partial derivatives, then find 
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and evaluate D at (x, y) = (a, b).


D(a, b) > 0  and  fxx(a, b) > 0    (   a relative minimum of  f  is at (a, b)


D(a, b) > 0  and  fxx(a, b) < 0    (   a relative maximum of  f  is at (a, b)


D(a, b) < 0    (   a saddle point of  f  is at (a, b)


D(a, b) = 0    (   test fails (no information).  





Example:


Find all extrema of    f (x, y)  =  x2  +  y2  +  4x  (  6y .


 f (x, y)  is a polynomial function of  x and y  and is therefore defined and differentiable in all of (2.   Any critical points will therefore be of type (4) only.





�EMBED Equation.DSMT4���


fxx  =  2,   fxy  =  0,   fyy  =  2
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D > 0  and  fxx  > 0  at  ((2, 3)  (  there is a relative minimum at ((2, 3) and 


the minimum value is  f ((2, 3) = (13.


As there are no other critical points,   f (x, y)  has an absolute minimum value of (13 at ((2, 3) and has no maxima.   


[z = f (x, y)  is a circular paraboloid, vertex at ((2, 3, (13) and axis of symmetry parallel to the z-axis.]





   


Various other examples will appear both in class and on the problem sets.











�
2.7	Lagrange Multipliers 





To find the maximum or minimum value(s) of a function  f (x1, x2, ... , xn) subject to a constraint   g(x1, x2, ... , xn)  = k, solve the system of simultaneous (usually non-linear) equations in (n + 1) unknowns:


(f  =  ( (g


g  =  k


where  (  is the Lagrange multiplier.


Then identify which solution(s) gives a maximum or minimum value for  f.





See example 1 from the class notes.





In the presence of two constraints   g(x1, x2, ... , xn)  = k  and  h(x1, x2, ... , xn)  = c , solve the system in (n + 2) unknowns: 


(f  =  ( (g + ( (h


g  =  k


h  =  c





See example 2 from the class notes.











END OF CHAPTER 2

















Page � PAGE �18�	ENGR 2422





	ENGR 2422	Page � PAGE �17�











