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1.2
Polar Coordinates  

The description of the location of an object in (2 relative to the observer is not very natural in Cartesian coordinates:  “the object is three metres to the east of me and four metres to the north of me”, or (x, y) = (3, 4).   It is much more natural to state how far away the object is and in what direction:  “the object is five metres away from me, in a direction approximately 53° north of due east”, or (r, () = (5, 53°).

Radar also operates more naturally in plane polar coordinates.
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r = range

( = azimuth

O  is the pole

OX  is the polar axis (where ( = 0)
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Anticlockwise rotations are positive.



[Nautical bearings are very different: 



positive rotation is measured clockwise, 



from zero at due north !]
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Example 1.2.01  

The point P with the polar coordinates (r, () = (4, ( / 3) 

also has the polar coordinates
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or
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Example 1.2.01  (continued)
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The point 
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 is at P.

So also is 
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In general, if the polar coordinates of a point are (r, (), then 
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(n = any integer)

also describe the same point.

The polar coordinates of the pole are (0, () for any (. 
In some situations, we impose restrictions on the range of the polar coordinates, such as

  r > 0 ,  ((  <  (  <  +(   for the principal value of a complex number in polar form.

Conversion between Cartesian and polar coordinates:

[image: image88.png]@





[image: image9.wmf]cos

xr

q

=




[image: image10.wmf]sin

yr

q

=


Inverse:
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Therefore
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More information is needed in order to select the correct quadrant.

Example 1.2.02  

Find the polar coordinates for the point whose Cartesian coordinates are ((3, 4).
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x  =  (3 ,   y  =  4

r 2  =  9  +  16  =  25

(
r  =  ( 5
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((3, 4) is in the second quadrant.

If we choose  r > 0, then one value of  (  is   (  =  (Tan(1(4/3) + (  (  2.21 rad.

One possibility:
(r, ()  =  (5, 2.21)
(to 3 s.f.)

Therefore, to 3 s.f.,  


(r, ()  =  (5, 2.21 + 2n()  or  ((5, 2.21 + (2n+1)() ,
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Example 1.2.03  

Find the Cartesian coordinates for 
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Therefore 
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Polar Curves    r  =  f (()   

The representation (x, y) of a point in Cartesian coordinates is unique.   For a curve defined implicitly or explicitly by an equation in x and y, a point (x, y) is on the curve if and only if its coordinates (x, y) satisfy the equation of the curve.

The same is not true for plane polar coordinates.   Each point has infinitely many possible representations, 
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(where  n  is any integer).   A point lies on a curve if and only if at least one pair (r, () of the infinitely many possible pairs of polar coordinates for that point satisfies the polar equation of the curve.   It doesn’t matter if other polar coordinates for that same point do not satisfy the equation of the curve.

Example 1.2.04  

The curve whose polar equation is  [image: image90.png]




r  =  1  +  cos (  

is a cardioid 

(literally, a “heart-shaped” curve).

{ r = 2,  (  = 2n( } 

(where n is any integer) 

satisfies the equation  r  =  1  +  cos ( .

(
(r, ()  =  (2, 2n()  is on the cardioid curve.

But (2, 2n() is the same point as ((2, (2n+1)().

(  =  (2n+1)(    (    1  +  cos (  =  0  ≠  r .

Yet the point whose polar coordinates are ((2, (2n+1)() is on the curve!

Example 1.2.05  

Convert to polar form the equation 
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r 2  =  r  +  3r sin (  

(
r ( r ( 1 ( 3 sin ( )  =  0

(
r  =  0    or    r  =  1  +  3 sin ( 

But  
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 is a solution of   r  =  1  +  3 sin ( 

(
r  =  0   is included in   r  =  1  +  3 sin ( .

Therefore the polar equation of the curve is 

r  =  1  +  3 sin (
(which is a limaçon).

Note that there is no restriction on the sign of r ;  it can be negative. 

Example 1.2.06  

Convert to Cartesian form the equation of the cardioid curve   r  =  1  +  cos ( .
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(
r 2  =  r  +  x  

(
r 2  (  x  =  r 




(
(r 2  (  x)2  =  r2 

Therefore 

(x 2 + y 2 ( x) 2  =  x 2 + y 2
Tangents to  r  =  f (()  

x  =  r cos (  =  f (() cos (  

y  =  r sin (  =  f (() sin (  

By the chain rule for differentiation:
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This leads to a general expression for the slope anywhere on a curve  r  =  f (() :


[image: image29.wmf]sincos

cossin

dr

r

dy

d

dr

dx

r

d

qq

q

qq

q

+

=

-



[image: image30.wmf](

)

0and0at,

dydx

r

dd

q

qq

=¹Þ


horizontal tangent at (r, () .
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vertical tangent at (r, () .

At the pole  (r = 0): 
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If  r ( 0  but  
[image: image33.wmf]dr
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  as  (  ( (o , then 

the radial line  (  = (o is a tangent at the pole.

[This can be of some help when sketching polar curves.] 

Example 1.2.07  

Sketch the curve whose equation in polar form is  r  =  cos 2( .

Two methods will be demonstrated here.   The first method is a direct transfer from a Cartesian plot of r against (  (as though the curve were  y = cos 2x).   The second method is a systematic tabular method, involving investigation of the behaviour of the curve in intervals of (  between consecutive critical points (where r and/or its derivative is/are zero or undefined).
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Method 1.
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Method 2.

r = cos 2(  = 0  at  2(  =  (any odd multiple of (/2)

(
r = 0  at  (  =  (any odd multiple of (/4)
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(
r' = 0  at  (  =  (any integer multiple of (/2)

Therefore tabulate in intervals bounded by (  =  (consecutive integer multiples of (/4).

	2(
	0 ( (/2
	(/2 ( (
	( ( 3(/2
	3(/2 ( 2(
	2( ( 5(/2
	...

	(
	0 ( (/4
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	(/2 ( 3(/4
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	...

	r
	1 ( 0
	0 ( (1
	(1 ( 0
	0 ( 1
	1 ( 0
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	Region in sketch
	(1)
	(2)
	(3)
	(4)
	(5)
	


This leads to the same sketch as in Method 1 above.

You can follow a plot of  r  =  cos n(  by Method 1 (for n = 1, 2, 3, 4, 5 and 6) on the web site.   See the link at "http://www.engr.mun.ca/~ggeorge/2422/programs/".

The distinct polar tangents are 
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Length of a Polar Curve  

If   r  =  f (()  (for  ( < ( < (), then 

x  =  f (() cos (   and   y  =  f (() sin ( 

Let   r  =  f (() ,    r'  =  f ' ((),   c  =  cos (   and   s  =  sin ( , then 
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and
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=  (r') 2(c 2 + s 2)  +  0  +  r 2(s 2 + c 2) 
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Therefore the length L along the curve  r  =  f (()  from  ( = (  to  ( = (  is 
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Example 1.2.08  

Find the length  L  of the perimeter of the cardioid  r = 1 + cos ( .
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( = 0 ,    (  =  2( .

r  =  1 + cos (  =  1 + c 
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1  +  2c  +  c 2  +  s 2  =  2  +  2c 

Example 1.2.08  (continued)

But   1 + cos 2x  =  2 cos 2x .   Set  (  =  2x.
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Using symmetry in the horizontal axis, 
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Therefore the perimeter of the cardioid curve is  L = 8.

Note:

For   (  <  (  <  2( ,    
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Example 1.2.09  

Find the arc length along the spiral curve  r  =  a e(  (a > 0), from  ( = (  to  ( = ( .
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Area Swept Out by a Polar Curve   r  =  f (θ)  

ΔA  ≈  Area of triangle[image: image94.png]r+Ar
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But the angle Δθ  is small, so that  sin Δθ  ≈ Δθ 

and the increment  Δr  is small compared to r.

Therefore 
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Example 1.2.10   

Find the area of a circular sector, radius  r , angle θ .

r  =  constant,

β  =  α  +  θ  
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Therefore
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Full circle:    θ  =  2π   and   A  =  πr 2 .

Example 1.2.11   

Find the area swept out by the polar curve  r  =  a eθ  over  α < θ < β , 

(where  a > 0  and  α < β < α + 2π ).
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The condition (α < β < α + 2π )

prevents the same area being swept

out more than once.

If   β > α + 2π  then one needs to

subtract areas that have been 

counted more than once 

[the red area in the diagram]
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Therefore 
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In general, the area bounded by two polar curves  r  =  f (θ)  and  r  =  g(θ)  and the radius vectors  θ  =  α  and  θ  =  β  is 
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See the problem sets for more examples of polar curve sketching and the calculation of the lengths and areas swept out by polar curves.

Radial and Transverse Components of Velocity and Acceleration  
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At any point P (not at the pole), the unit radial vector 
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 points directly away from the pole.   The unit transverse vector 
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 is orthogonal to 
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 and points in the direction of increasing θ.   These vectors form an orthonormal basis for (2.

Only if θ is constant will 
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 and 
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 be constant unit vectors, (unlike the Cartesian i and j).

The derivatives of these two non-constant unit vectors can be shown to be
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Using the “overdot” notation to represent differentiation with respect to the parameter t, these results may be expressed more compactly as 
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The radial and transverse components of velocity and acceleration then follow:
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The transverse component of acceleration can also be written as 
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Example 1.2.12  

A particle follows the path  r = θ ,  where the angle at any time is equal to the time: 

θ = t > 0.   Find the radial and transverse components of acceleration.


r  =  θ  =  t 
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Therefore


ar  =  −t    and   atr  =  2
Example 1.2.13  

For circular motion around the pole, with constant radius  r  and constant angular velocity 
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, the velocity vector is purely tangential, 
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which matches the familiar result that “centrifugal” or “centripetal” force = r ω 2, directed radially inward.
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