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2.1 Partial Derivatives   
 
Example 2.1.1  
 
At a particular instant, a cone has a height of  h = 2 m  and a base radius of  r = 1 m. 
The base radius is increasing at a rate of  1 mm/s.   The height is constant. 
How fast is the volume  V  increasing at this time? 

 
 
 
 
 

21
3

V rπ= h  

 

We need dV
dt

. 

 
 
h = const.   ⇒   V  is a function of r only. 
 
 
 

( )chain ruledV dV dr
dt dr dt

= ⋅  

 

( )21 2
3 3

d drr h rh
dr dt dt

π π= ⋅ =
dr
⋅  

 

( ) ( ) 3 12 11 2 m s
3 1000
π −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 
Therefore 

3 1 3 1m s 0.00419 m s
750

dV
dt

π − −= ≈  

 
 

1 1But if 1 mms and 2 mms ,dr dh
dt dt

− −= = −  

how do we find ?dV
dt

 

We shall return to this question later. 
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Graph of  V  against  r  and  h : 
 

Plotting  z = V  (where  V = πr2h/3) against both  x = r  and  y = h  yields  

 
The cross-section of this surface in the 
vertical plane  h = 2  is  
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The cross-section of this surface in the 
vertical plane  r = 1  is  
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The tangent line to the surface in a cross-section (h = constant) has a slope of V
r

∂
∂

. 

The tangent line to the surface in a cross-section (r = constant) has a slope of V
h

∂
∂

. 

At each point on the surface, these two tangent lines define a tangent plane. 
 
V is a function of r and h, each of which in turn is a function of t only. 
In this case, the chain rule becomes 

dV V dr V dh
dt r dt h dt

∂ ∂
= ⋅ + ⋅

∂ ∂  

 
In example 2.1.1,  
 

r = 1, h = 2, 22 4 1,
3 3 3

V Vrh r
r h

1
3

π π π∂ ∂
= = = =

∂ ∂
π , 

1 2,
1000 1000

dr dh
dt dt

−
= =    3 14 1 2 m s

3 1000 3 1000 1500
dV
dt

π π π −⇒ = × − × =  

 
 
 
 
 
 
 
Alternative notations: 

 ( )( ),r r
V V D V V r h
r r

∂ ∂
= = =

∂ ∂
 

 

If   w  =  f (x, y, z),  then  ( ) ( )
0

, , , ,
lim
y

f x y y z f x y zw
y yΔ →

+ Δ −⎛ ⎞∂
= ⎜ ⎟∂ Δ⎝ ⎠

, etc. 

 
 
A Maple worksheet, used to generate the graph of ( ) 21

3,V r , is available at  h r hπ=

"http://www.engr.mun.ca/~ggeorge/2422/programs/conevolume.mws". 
 
Open this worksheet in Maple and click on the graph. 
Then, by dragging the mouse (with left button down), one can change the direction of 
view of the graph as one wishes.   Other features of the graph may be changed upon 
opening a menu with a right mouse click on the graph or by using the main menu at the 
top of the Maple window. 
 
 



ENGI 2422 Partial Derivatives Page 2-04 

Example 2.1.2   
 
( ) 2 2, , 2f x y z x y z= + + . 

Find   fz(0, 3, 4)    
[the first partial derivative of f with respect to z, evaluated at the point (0, 3, 4)]. 
 

( ) ( )

( )

1/ 22 2 2 2 2 21
2
1 0 0 2

2

f x y z x y z
z z

zz
f f

−∂ ∂
= + + ⋅ + +

∂ ∂

= ⋅ + + =
 

 

( ) 4 40, 3, 4
50 9 16zf⇒ =

+ +
=  

 
 
 
 
OR  
 
 f 2  =  x 2  +  y 2  +  z 2   
  
Using implicit differentiation,  
 

 2 0 0f 2f z
z

∂
= + +

∂
 

 

( )4 , as befor
5z

zf
f

⇒ = = e  

 
In this example,  
 
f  =  (distance of the point (x, y, z) from the origin). 
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Example 2.1.3  
 
 u  =  xy/z   
 
Find the three first partial derivatives,  ux, uy, uz. 
 

( ) ( )1
1/n n

y
y z zyx x

x z
d x n x
dx

⎛ ⎞
⎜ ⎟
⎝− ⎠

−
=

∂
⇒ = ⋅

∂
 

 
( ) /

x
y z zy yuu x

z x
−∴ = =

z
 

 
 
 

/ exp lny z yu x x
z

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

 

( )1 ln exp ln lny
y uu x x x

z z z
⎛ ⎞⇒ = =⎜ ⎟
⎝ ⎠

⇒  

 
/1 lny

y zu x
z

= x  

 
 
OR 
 

( )ln ln ln lny yu x u
z y y

∂ ∂ ⎛ ⎞= ⇒ = ⎜ ⎟∂ ∂ ⎝ ⎠
x

z
 

 
1 1 ln lny y

uu x u
u z z

⇒ ⋅ = ⋅ ⇒ = ⋅ x  

 
 
 

( )1 21ln ln 1 lnzu yz x u y z
u

− −= ⇒ ⋅ = − x  

 

2 2
/ln lnz

y zu y yu x x
z z

⇒ = − = − x  
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2.2 Higher Partial Derivatives   
 

 x
uu
x

∂
=

∂
 

 
2

2 x x
u u

x
u

x x
⎛ ⎞∂ ∂

=⎜ ⎟
∂
∂⎠

=
∂ ∂⎝

 

 
2

x y
u u

x
u

y x y
⎛ ⎞∂ ∂

=⎜ ⎟
∂
∂ ∂⎠

=
∂ ∂⎝

 

 
32

x y z
u

z y xx
u u

z y
⎛ ⎞∂ ∂

=⎜ ⎟
∂

=
∂ ∂⎠ ∂∂ ∂ ∂⎝

 

 

2

2 3

x y y
u

y y x
u u

y x
⎛ ⎞∂ ∂

=⎜ ⎟
∂

=
∂⎠ ∂∂ ∂ ∂⎝

 

 
etc. 
 
 
Example 2.2.1  
 
 u  =  x e−t sin y   
 
Find the second partial derivatives  uxy, uyx, uxx  and the third partial derivative uttt.  
 
ux  =  e−t sin y 
 
uy  =  x e−t cos y 
 
ut  =  −x e−t sin y =  −u 
 

( ) cost
xy xu u e

y
−∂

= =
∂

y  

 

( ) cost
yx y xyu u e y

x
−∂

= = =
∂

u  

 
uxx  =  0 

ut  =  − u  
 
⇒   utt  =  (−u)t  =  + u 
 
⇒   uttt  =  (+u)t  =  − u 
 
Therefore 
 
uttt  =  −x e−t sin y  
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Clairaut’s Theorem  
 
If, on a disk D  containing the point (a, b),  f  is defined and both of the partial derivatives  
fxy and fyx are continuous, (which is the case for most functions of interest), then 
 

( ) ( ), ,xy yxf a b f a b=  
that is, the order of differentiation doesn’t matter. 
 
One of the most important partial differential equations involving second partial 
derivatives is Laplace’s equation, which arises naturally in many applications, including 
electrostatics, fluid flow and heat conduction: 

02

2

2

2

=
∂
∂

+
∂
∂

y
u

x
u  

or its equivalent in ú3: 

02

2

2

2

2

2

=
∂
∂

+
∂
∂

+
∂
∂

z
u

y
u

x
u  

 
Example 2.2.2   
 
Does 2lnu x= + 2y  satisfy Laplace’s equation? 
 

( )2 21 ln
2

u x= + y  

 
( )

2 2 2 2

1
2 2

x

x xu
x y x y

⇒ = =
+ +

 

 
( ) ( )

( ) ( )

2 2 2 2

2 22 2 2 2

1 2
x x

x y x x y xu
x y x

+ − −
⇒ = =

+ + y
 

 
u  is symmetric with respect to  x, y. 
 
Therefore, to find  uyy, interchange  x, y  in  uxx . 
 

( )
2 2

22 2y y x x
x yu u
y x

−
⇒ = = −

+
 

 
⇒     uxx  +  uyy  =  0 
Therefore  u  does satisfy Laplace’s equation (except at (0,0)). 
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2.3 Differentials   
 
In ú2,  let a curve have the Cartesian equation y  =  f (x). 
 
The small change in y, (Δy), caused by travelling along 
the curve for a small horizontal distance Δx, may be 
approximated by the change  dy  that is caused by 
travelling for the same horizontal distance Δx along the 
tangent line instead. 
 
The exact form is   Δy  =  f (x + Δx)  −  f (x)  . 
 
The approximation to Δy is  
   Δy   ≈  dy  =  f '(x) dx   
where the differential dx has been replaced by the increment Δx. 
The approximation improves as Δx decreases towards zero. 
 
Stepping up one dimension, let a surface have the Cartesian equation   z  =  f (x, y). 
The change in the dependent variable  z  caused by small changes in the independent 
variables  x  and  y  has the exact value  
 Δz  =  f (x + Δx, y + Δy)  −  f (x, y)  . 
 
The approximation to Δz is  

f fz dz dx d
x y

y∂ ∂
Δ ≈ = +

∂ ∂  

 
Example 2.3.1  
 
A rectangle has quoted dimensions of 30 cm for length and 24 cm for width.  
However, there may be an error of up to 1 mm in the measurement of each dimension. 
Estimate the maximum error in the calculated area of the rectangle. 
 

 
Let   A = area,  L = length  and  W = width. 
 
Length = (30 ± 0.1) cm    ⇒   L  =  30  and  ΔL  =  0.1 
Width = (24 ± 0.1) cm    ⇒   W  =  24  and  ΔW  =  0.1 
 
  A  =  LW 

A AdA dL dW
L W

W dL L dW

∂ ∂
= +

∂ ∂
= +
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Example 2.3.1 (continued) 
 
Let   dL  =  dW  =  0.1,  then 
 
max(error)  =  ΔA  ≈  dA   
 
   =  24 × 0.1  +  30 × 0.1 
 
   =  5.4 cm2 . 
 
Compare this to a direct calculation: 
 
max(error)  =  max{ (Amax − A), (A − Amin) }  
 
A − Amin  =  30 × 24  −  (30 − 0.1)(24 − 0.1)  
 
    =  5.39 cm2 . 
 
Amax − A  =  (30 + 0.1)(24 + 0.1)  −  30 × 24 
 
    =  5.41 cm2 . 
 
Therefore 
 
max(error)  =  5.41 cm2 .  
 
Relative error: 
 
max(error in L)  =  L / 300 
 
max(error in W)  =  W / 240 
 
A  =  LW   
 
⇒ dA  =  W dL  +  L dW   
 

dA W dL L dW
A LW LW

⇒ = +  

 
1 1 4 5

300 240 1200 400
dA dL dW
A L W

3+
⇒ = + = + = =  

 

0.75%A dA
A A
Δ

∴ ≈ =  

and 0.75% of  A = 720 cm2  is  5.4 cm2 .
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Chain Rule  
 
z  =  f (x, y). 
If  x and y  are both functions of  t only, then, by the chain rule,  
  

dz z dx z dy
dt x dt y dt

∂ ∂
= +

∂ ∂  

 
 
 
 
If   z  =  f (x, y)  and  y  in turn is a function of  x only, then  
replace t by x in the formula above. 
   

1dx
dx

=   and   

dz z z dy
dx x y dx

∂ ∂
= +

∂ ∂  

Note the distinction between the total derivative dz
dx

 and the partial derivative z
x

∂
∂

. 
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Example 2.3.2  
 
In the study of fluid dynamics, one approach is to follow the motion of a point in the 
fluid.   In that approach, the velocity vector is a function of both time and position, while 
position, in turn, is a function of time.     v = v(r, t)   and   r = r(t).  
 
The acceleration vector is then obtained through differentiation following the motion of 
the fluid:  

( ) d d x d yt
d t t x d t y d t z d t

∂ ∂ ∂ ∂
= = + + +

∂ ∂ ∂ ∂
v v v v va
K K K K KK d z  

or, equivalently, ( ) ( )dt
d t t

∂
= = +

∂
v va v v
K K KK K Ki  ∇

[The gradient operator, L, will be introduced later, on page 2-20.] 
Further analysis of an ideal fluid of density ρ  at pressure p subjected to a force field F 
leads to Euler’s equation of motion  

( ) p
t ρ

∂
+ = −

∂
v v v F

KK K KK Ki ∇
∇  

This application of partial differentiation will be explored in some disciplines in a later 
semester.   As a simple example here, suppose that  ( ), 1, 10 1 ,xe−=v t−K  then find the 
acceleration vector. 
 
First note that the velocity vector is the derivative of the displacement vector, so that 
 

( ), , ,1,10 1xd d x d y d z e t
dt dt dt dt

−= = = −
rv
KK  

 

0, 0, 10 , , 0, 0xe
t x

−∂ ∂
= − = −

∂ ∂
v vK K

 

 

0, 0, 0
y z

∂ ∂
= =

∂ ∂
v vK K

 

 

( ) d d x d y dt
dt t x dt y dt z dt

∂ ∂ ∂ ∂
= = + + +

∂ ∂ ∂ ∂
v v v v va
K K K K KK z  

20, 0, 10 , 0, 0 , 0, 10x x xd e e e
dt

−− −⇒ = − + − + + = − −
v 0 0
K K K

 

[One can show that   x(t)  =  ln | t + c | , where  c  is a constant.] 
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Generalized Chain Rule  
 
Let  z  be a function of  n variables  { x1, x2, ... , xn },  
each of which, in turn, is a function of  m variables   
{ t1, t2, ... , tm }, so that  
  z  =  f (x1(t1, t2, ... , tm), x2(t1, t2, ... , tm), ...   
             ... , xn(t1, t2, ... , tm) ).  

To find 
i

z
t

∂
∂

,  

trace all paths that start at z and end at ti , via all of the { xj } variables.  
 

( )
1 1

and 1,2, ,
n n

j
j

j jj i j i

xz z zdz dx i m
x t x t= =

∂∂ ∂ ∂
= = =

∂ ∂ ∂ ∂∑ ∑ "  

 
 
Example 2.3.3: 
 
u = xy + yz + zx,   x = st,   y = est  and  z = t2 .     
Find  us  in terms of s and t only.    Find the value of  us when  s = 0  and  t = 1. 
 
 

 
u u x u
s x s y

y
s

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
 

[There is no z term because z is not a function of  s.] 

( ) ( )0 0 stu y z t x z t e
s

∂
= + + + + +

∂
 

        =  t ( (est + t2)  +  (st + t2) est)  
 

      =  t3  + t (1 + st + t2) est  
 
This derivative could also be found directly by replacing  x, y and z  by the respective 
functions of  s and t  before differentiating  u: 
 
 u  =  (st) est  +  (est) t2  +  (t2)st   
 
⇒ us  =  (st2 + t) est  +  (est) t3  +  t3  =  t3  + t (1 + st + t2) est  
 
us (0, 1)  =  1  +  1(1+0+1)e0  =  1 + 2  =  3 . 
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Implicit functions: 
 
If  z  is defined implicitly as a function of  x and y  by   F (x, y, z)  =  c , then 
dF  =  Fx dx  +  Fy dy  +  Fz dz  =  0 

( ) 0provided1
≠

∂
∂

=+−=⇒
z
FFdyFdxF

F
dz zyx

z

 

Example 2.3.4: 
 
Find the change in  z  when  x  and  y  both increase by 0.2  from the point  (1, 2, 2) on the 
sphere   x2  +  y2  +  z2  =  9. 

( ) ( )2 2 2 1 129 2
2

x dx yF x y dy x dx yz dz dy
z z

= + + = ⇒ − + = − +=  

Note: 
If  y  is a function of  x only, then 
 

z z dy x y dy
x y dx

dz
d zx z d

∂ ∂
+ = − −

∂
=

∂ x
 

 
 
 

However, if  x  and  y  are independent of each other, then dz
dx

 is ill-defined. 

The only derivative of z with respect to x that we can then define is z
x

∂
∂

. 

2 2 2 9 2 0 2 0z zx y z x z x
x x z

∂ ∂
+ + = ⇒ + + = ⇒ = −

∂ ∂
 .  [End note] 

 
Solution  −  Approximate motion on the sphere by motion on the tangent plane: 
 
x  =  1 ,    y  =  z  =  2 ,    dx  ≈  Δx  =  0.2 ,   dy  ≈  Δy  =  0.2 . 
 

( )1 1 0.2 2 0.2 0.3
2

z dz⇒ Δ ≈ = − × + × = −  

 
Therefore   z  decreases by [approximately]  0.3  
 
Exact:  

2 2
old 9 1 2 4 2z = − − = =  

 

( ) ( )2 2
new 9 1.2 2.2 2.72 1.649z = − − = ≈  

 
Therefore    Δz  =  −0.3507... 
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Curves of Intersection  
 
Example 2.3.5: 
Find both partial derivatives with respect to  z  on the curve of intersection of the sphere 
centre the origin, radius 5, and the circular cylinder, central axis on the y-axis, radius 3. 
 
Sphere: f  =  x2 + y2 + z2  =  25 
 
Cylinder: g  =  x2    +    z2  =  9 
 
⇒  df  =  2x dx  + 2y dy  + 2z dz  =  0   
 
and  dg  =   2x dx       + 2z dz  =  0   
 
which leads to the linear system  
 

  
1

0 1
x y dx

z dz
x dy

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⋅ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

1 1 0
0 1 1

dx x y yzz dz dz
dy x x xxy

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⇒ = − ⋅ = + ⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1
 

 
1

0 0
yz zdz dz

xy x
−⎡ ⎤ ⎡ ⎤

= ⋅ = − ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 
Therefore 

and 0zdx dz dy dz
x

= − =  

 and 0x z y
z x z

∂ ∂
⇒ = − =

∂ ∂
 

[The intersection is the pair of circles   x2 + z2  =  9,   y  =  ±4 . 
Because  y  never changes on each circle,  x is actually a function of  z only.] 
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Example 2.3.6   
 

A surface is defined by   f (x, y, z)  =  xz  +  y2z  +  z  =  1 .     Find  z
y

∂
∂

. 

 
Implicit method:  
 

f fd fdx dy dz
x y z

f ∂ ∂ ∂
+ +

∂ ∂ ∂
=  

 
0  =  z dx  +  2yz dy  +  (x + y2 + 1) dz   
 
But f  =  1    ⇒   (x + y2 + 1) z  =  1 
 

( )22 2dz z dx yz dy dz z dx y dy
z

⇒ = − − ⇒ = − +  

 

In the slice in which the partial derivative z
y

∂
∂

 is evaluated,  x  is constant     ⇒    dx = 0. 

 
 

( )2 20 2 2z z y
y

∂
⇒ = − + = −

∂
yz  

 
 
Explicit method:  
 

( ) ( ) ( )1 22 2

2

1 1 0 2

z

zz x y x y y y
y

− −∂
= + + ⇒ = − + + + + = −

∂ ���	��

20 2 z  

 
 
 
 
 
 
 
In general,   if    a dx  +  b dy  =  c dz    then  

z a
x c

∂
=

∂
 (because  y  is constant and  dy  =  0  in the slice in which z

x
∂
∂

 is evaluated) and 

z b
y c

∂
=

∂
 (because  x  is constant and  dx  =  0  in the slice in which z

y
∂
∂

 is evaluated).
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2.4 The Jacobian   
 
The Jacobian is a conversion factor for a differential of area or volume between one 
orthogonal coordinate system and another. 
 
Let   (x, y) ,  (u, v)  be related by the pair of simultaneous equations  
 
 f (x, y, u, v)  =  c1  
 g(x, y, u, v)  =  c2  
 
⇒ df  =  fx dx  +  fy dy  +  fu du  +  fv dv  =  0 
and dg  =  gx dx  +  gy dy  +  gu du  +  gv dv  =  0 
 
 

x y u v

x y u v

BA

f f f fdx du
g g g gdy dv

− −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛
⇒ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜− −⎝ ⎠ ⎝⎝ ⎠⎝ ⎠ ���	��
��	�


⎞
⎟
⎠

⎞
⎟
⎠

 

 
 

1dx du
A B

dy dv
−⎛ ⎞ ⎛

⇒ =⎜ ⎟ ⎜
⎝ ⎠ ⎝

 

 
which leads to  
 

( )
( )

,
,

x y
dA dx dy du dv

u v
∂

= =
∂  

 
where the Jacobian is  

( )
( )

, det
, det

x y B
u v A

∂
=

∂  

 
 
 
 
 
 
 
The Jacobian for the transformation from (x, y) to (u, v) is also the magnitude of the cross 
product of the tangent vectors that define the boundaries of the element of area, so that  

( )
( )

,
,

x y
u v u v

∂ ∂ ∂
= ×

∂ ∂ ∂
r rK K
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Example 2.4.1 
 
Transform the element of area   dA  =  dx dy   to plane polar coordinates.  
 
 x  =  r cos θ ,    y  =  r sin θ .  
 
 f  =  x  −  r cos θ  =  0  
 
 g  =  y  −  r sin θ  =  0  
 
⇒ df   =   dx  −  cos θ dr  +  r sin θ dθ  =  0 
 
and dg   =   dy  −  sin θ dr  −  r cos θ dθ  =  0 
 

1 0 cos sin
0 1 sin cos

B

dx r dr
dy r d

A

θ θ
θ θ θ

−⎛ ⎞⎛ ⎞ ⎛ ⎞⎛
⇒ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝��	�
 ����	���


⎞
⎟
⎠

 

 
( )
( ) ( )

2 2, cos sin if 0
, 1

Bx y r r r r r
r A

θ θ
θ

∂ +
⇒ = = = =

∂
≥  

 
Therefore  

dA  =  r dr dθ 
 
 
 
 
 
 
If  x, y  can be written as explicit functions of (u, v), then an explicit form of the Jacobian 
is available:  
 

( )
( )

,
,

x x
u vx y
y yu v
u v

∂ ∂
∂ ∂∂

=
∂ ∂∂
∂ ∂

 

 
The Jacobian can also be used to express an element of volume in terms of another 
orthogonal coordinate system:  

( )
( )

, ,
, ,

x y z
dV dx dy dz du dv dw

u v w
∂

= =
∂  
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Spherical Polar Coordinates – a reminder. 
 
The “declination” angle θ  is the angle 
between the positive z axis and the 
radius vector r.    0 < θ < π. 
 
The “azimuth” angle φ  is the angle on 
the x-y plane, measured anticlockwise 
from the positive x axis, of the shadow 
of the radius vector.   0 < φ < 2π.  
 
 z  =  r cos θ . 
 
The shadow of the radius vector on the 
x-y plane has length  r sin θ.  
 
It then follows that  
 
 x  =  r sin θ cos φ     and     y  =  r sin θ sin φ . 
 
Example 2.4.2   
 
Express the element of volume  dV  in spherical polar coordinates,  

, , sin cos , sin sin , cosx y z r r rθ φ θ φ= =rK θ  
 
Using the explicit form,  

( )
( )

sin cos co
, ,

s cos sin sin
sin sin cos sin sin cos

cos sin 0
, ,

r

r

r

x x x
x y z

y y y
r

z z z

r r
r r

r

θ φ

θ φ

θ φ

θ φ θ φ θ φ
θ φ θ φ θ

θ
φ

θ
θ

∂
= =

−

−
∂

φ  

 
 
 
Expanding along the last row of the determinant,  
( )
( ) ( ) ( ) ( )( )2 2 2 2 2 2, ,

cos sin cos cos sin sin sin cos sin 0
, ,

x y z
r r r

r
θ θ θ φ φ θ θ φ φ

θ φ
∂

= + +
∂

+ +

 
 
    =  | r2sin θ (cos2 θ + sin2 θ) |  =  r2sin θ   
 
Note that   sin θ  >  0   because   0 < θ < π . 
 
Therefore  

dV  =  r2sin θ dr dθ dφ 
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For a transformation from Cartesian to plane polar coordinates in ú2,  
( )
( ) θ===

θ∂
∂ ddrrdydxdAr

r
yx thatso

,
,  

For cylindrical polar coordinates in ú3, 
( )
( ) dzddrrdVr

zr
zyx

θ=⇒=
θ∂

∂
,,
,,

 

 
Explicit method for plane polar coordinates: 
x  =  r cos θ ,    y  =  r sin θ 

( )
( ) θθ

θ−θ
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

θ∂
∂

∂
∂

θ∂
∂

∂
∂

=
θ∂

∂
⇒

cossin
sincos

det
,
,

r
r

y
r
y

x
r
x

ABS
r

yx  

=  r cos2θ  +  r sin2θ  =  r . 
 
Implicit method for plane polar coordinates:  [which is a repeat of page 2-17.] 
f  =  x  −  r cos θ  =  0    ⇒   df  =  dx  −  cos θ dr  +  r sin θ dθ  =  0 
g  =  y  −  r sin θ  =  0    ⇒   dg  =  dy  −  sin θ dr  −  r cos θ dθ  =  0  

⎥
⎦

⎤
⎢
⎣

⎡
θ

⋅⎥
⎦

⎤
⎢
⎣

⎡
θθ
θ−θ

=⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
⇒

d
dr

r
r

dy
dx

��� 
��� 	��
�	�
BA

cossin
sincos

10
01

 

( )
( ) rrrr
r

yx
==

θ+θ
==

θ∂
∂

⇒
1

sincos
,
, 22

A
B
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2.5 The Gradient Vector    
 
Let   F  =  F(r)   and   r  =  r(t) . 
 

F dx F dy F dz
x dt y

dF
d dtt z dt

∂ ∂ ∂
+ +

∂ ∂
=

∂
 

 
 

, , dF
x y z dt

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟

∂ ∂ ∂⎝ ⎠

rKi  

 
 

dF dF
dt dt

= ∇
rKK

i  

 K
∇  =  “del”  or  “nabla”  =  gradient operator 
 

F
K
∇  =  gradient vector 
 
 
 
 
 
 
Directional Derivative   
 
The rate of change of the function  F  at the point  Po  in the direction of the vector  

( )ˆ 0a a= ≠a aK  is 

o o
ˆ ˆ

P P
D F F=a a

K
i∇  

 
The maximum value of the directional derivative of  F  at any point   Po  occurs when 
the vector a is parallel to the gradient vector F

K
∇ . 

 
Also,   the vector    is normal  F=Ν

K K
∇

to the surface defined by  F(r) = constant. 
 
[Interpretation of the gradient vector:  
The gradient vector is in the plane of  
the dependent variables. 
Its direction at any point is the direction in which one must travel in order to experience 
the greatest possible rate of increase of the dependent variable at that point. 
Its magnitude is that greatest possible rate of increase.] 
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Example 2.5.1   
 
The temperature in a region within 10 units of the origin follows the form  

2 2 2, where .rT r e r x y z−= = + +  
Find the rate of temperature change at the point (−1, −1, +1) in the direction of the vector  
1, 0, 0 .  

 
T  and  r  are symmetric with respect to  (x, y, z).  
 

T dT r
x dr x

∂ ∂
=

∂ ∂
 

 

( ) ( )1r rdT d r e r e
dr dr

− −= = −  

 

( ) ( )1/ 22 2 21 2 0 0
2

r xx y z x
x r

−∂
= + + + + =

∂
 

 

( )1 rT xr e
x r

−∂
⇒ = −

∂
 

 
By symmetry, it then follows that  

( ) ( )1 and 1r rT y Tr e r e z
y r z

− −∂ ∂
= − = −

∂ ∂ r
 

 
1 , ,rrT e x y

r
−−

⇒ =
K
∇ z  

 

ˆ
1ˆ ˆˆ , , 1, 0, 0rrD T T e x y z

r
−−

= ⇒ = =aa i i
K
i i∇  

 
( )At 1, 1, 1 , 1 1 1 3r− − + = + + =  

 
3 3

ˆ
1 3 3 11, 1, 1 1, 0, 0 0.0748 Km

3 3P
D T e e− −− − 1−∴ = − − + = ≈a i  

 
[Note that, in this example, the temperature distribution is spherically symmetric about 
the origin, with a minimum of zero at the origin, rising to a maximum of 1/e = 0.368... 
one metre away from the origin and falling asymptotically back to zero as r → ∞. 
Outside the  r = 1  sphere, the gradient vector points radially inwards.   At (−1, −1, 1) the 
gradient vector has a magnitude of approximately 0.104 K m−1.]  
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Central Force Law  
 
If  φ(r)  is the potential function for some force per unit mass or force per unit charge  
F(r), then F  =  −∇φ .   For a central force law, the potential function is spherically 
symmetric and is dependent only on the distance  r  from the origin.   When the central 
force law is a simple power law,  φ = k rn  . 
 

2 2r x y z= + + 2  
 

( ) ( )1/ 21 2 2 21 2 0 0
2

n

d r
x dr x

kn r x y z x

φ φ

−−

∂ ∂
⇒ =

∂ ∂

= ⋅ + + + +
 

 
1

2
n

nrkn x kn x r
r

−
−= ⋅ =  

 
By symmetry,  

2 2andn nkn y r kn z r
y z
φ φ− −∂ ∂

= =
∂ ∂

 

 
2 2, ,n nkn r x y z kn rφ − −⇒ = = r

K K∇  
 

ˆBut r=r rK  
 
Therefore 

1 ˆnkn rφ −−∇ = = −F r
K K

 
 
 
 
 
 
Examples include the inverse square laws, for which  n = −1:   
 
Electromagnetism: 

2
ˆ, ,

4 4 4
Q Q Qk

r r
φ φ

πε πε πε
= = = − =F r

K K
∇  

 
Gravity: 

2
ˆ, ,GM GMk GM

r r
φ φ− −

= − = = − =F r
K K

∇  
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Applications of the Directional Derivative and the Gradient: 
 
(1)     The directional derivative  D  at the point Po = (xo, yo, zo) is maximized by 

choosing a  to be parallel to  ∇F at Po, so that ( )
oo PP

FFD ra
GK

∇=ˆ . 

 
(2)    A normal vector to the surface F(x, y, z) = c at the point Po = (xo, yo, zo) is 
 ( )[ ]

oPF rN GKG
∇= . 

 
(3)   The equation of the line normal to the surface F(x, y, z) = c   at the point    

 Po = (xo, yo, zo)  is [ ] [ ] [ ]
oo PoPo FtFtOP ∇+=∇+=

KGKG rr  
 
(4)  The equation of the tangent plane to the surface F(x, y, z) = c   at the point  
 Po = (xo, yo, zo)  is  [ ] [ ] [ ] [ ] 0=∇•−=∇•−

oo PoPo FFOP
KKGKG rrr    

 
(5)  If the point   Po = (xo, yo, zo) lies on both of the surfaces F(x, y, z) = c  and  
 G(x, y, z) = k, then the angle of intersection θ  of the surfaces at the point is given 
 by 

[ ] [ ]
oo

oo

PP

PP

GF
GF

∇∇

∇•∇
=θ KK

KK
cos  
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2.6 Maxima and Minima    
 
Much of differential calculus in the study of maximum and minimum values of a function 
of one variable carries over to the case of a function of two (or more) variables.   In order 
to visualize what is happening, we shall restrict our attention to the case of functions of 
two variables,   z  =  f (x, y). 
 
For a function  f (x, y)  defined on some domain  D  in ú2, the point  P(xo, yo)  is a critical 
point [and the value  f (xo, yo) is a critical value] of  f  if 
1) P is on any boundary of  D;  or 
2) f (xo, yo) is undefined;  or 
3) fx and/or  fy is undefined at P;  or 
4) fx and  fy are both zero at P (⇒  ∇f = 0  at P). 
 
A local maximum continues to be 
equivalent to a “hilltop”,  

 

while a local minimum continues to be 
equivalent to a “valley bottom”. 

 
 
 
 
“Local extremum” is a collective term for local 
maximum or local minimum. 
 
Instead of tangent lines being horizontal at critical points 
of type (4), we now have tangent planes being horizontal 
at critical points of type (4). 
 
At any local extremum at which f (x, y) is differentiable, 
the tangent plane is horizontal, fx =  fy  = 0 and ∇f = 0 . 
The converse is false. 
∇f = 0 does not guarantee a local extremum.   There could be a saddle point (the higher 
dimensional equivalent of a point of inflection) instead. 
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Example 2.6.1    
 
Find and identify the nature of the extrema of   f (x, y)  =  x2  +  y2  +  4x  −  6y . 
 
Polynomial functions of  x and y  are defined and are infinitely differentiable on all of ú2. 
Therefore the only critical points are of type (4). 
 

2 4, 2 6f x y= + −
K
∇  
 

( ) ( ), 2, 3 only.f x y= ⇒ = −0
KK

∇  
 
 
 
But  f (x, y)  =  (x + 2)2  −  4  +  (y − 3)2  −  9   
 
   >  0  −  4  +  0  −  9   =   −13   =   f (−2, 3) 
 
Therefore the only local extremum is a minimum value of −13 at (−2, 3). 
 
It is also an absolute minimum. 
 
 
 
 
 
 
 
 
 
 
To determine the nature of a critical point: 
1) Examine the values of  f  in the neighbourhood of P;  or 
2) [First derivative test:]  Examine the changes in  fx and  fy  at P;  or 
3) Use the second derivative test: 
 
At all points (a, b) where  ∇f = 0 , find all second partial derivatives, then find  

yyyx

xyxx

ff
ff

D =  

and evaluate D at (x, y) = (a, b). 
D(a, b) > 0  and  fxx(a, b) > 0    ⇒   a relative minimum of  f  is at (a, b) 
D(a, b) > 0  and  fxx(a, b) < 0    ⇒   a relative maximum of  f  is at (a, b) 
D(a, b) < 0    ⇒   a saddle point of  f  is at (a, b) 
D(a, b) = 0    ⇒   test fails (no information).   
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Example 2.6.1 (again): 
 
Find all extrema of    f (x, y)  =  x2  +  y2  +  4x  −  6y . 
  
Any critical points will be of type (4) only. 
 

( ) ( )2 4, 2 6 , 2, 3 only.f x y x y= + − = ⇒ = −0
KK

∇  
 
fxx  =  2,   fxy  =  0,   fyy  =  2 
 

( )
2 0

4 0 ,
0 2

D x⇒ = = > ∀ y  

 
D > 0  and  fxx  > 0  at  (−2, 3)  ⇒  there is a relative minimum at (−2, 3) and  
the minimum value is  f (−2, 3) = −13. 
 
As there are no other critical points,   f (x, y)  has an absolute minimum value of −13 at 
(−2, 3) and has no maxima.    
 
[z = f (x, y)  is a circular paraboloid, vertex at (−2, 3, −13) and axis of symmetry parallel 
to the z-axis.] 
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Example 2.6.2   
Find all extrema of    f (x, y)  =  2x3  +  xy2  +  5x2  +  y2 . 
  
Any critical points will be of type (4) only. 
 

2 26 10 , 2 2f x y x xy y= + + +
K
∇  
 

f = ⇒0
KK

∇  
 
  6x2  +  10x  +  y2  =  0  (1) 
 
   2y (x + 1)  =  0  (2) 
 
(2)   ⇒   y = 0   or  x = −1 
 
y = 0  in (1)   ⇒   2x (3x + 5)  =  0 
 

5
30 orx x⇒ = = −  

 
x = −1  in (1)   ⇒   6 − 10 +  y2  =  0 
 
⇒   y2  =  4    ⇒   y  =  ± 2 
 
Critical points are   (x, y)  =  (0, 0),  (−5/3, 0),  (−1, −2)  and  (−1, +2). 
 
fx  =  6x2  +  10x  +  y2     and    fy  =  2y (x + 1) 
 
⇒ fxx  =  12x  +  10 
 
 fxy  =  2y  
 
and fyy  =  2 (x + 1) 
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Example 2.6.2  (continued)   
 
(0, 0):  z  =  f (0, 0)  =  0 
 

10 0
20 0

0 2
D = = >  

 
D  >  0   and   fxx  =  10  >  0    ⇒   minimum 
 
 

( ) ( ) ( )3 25 5
3 3,0 : 2 0 5 0z− = − + + − 5

3 +  

 

  ( ) ( )( )25 5
3 3

25 10 15 1252 5
9 3 2

− +⎛ ⎞= − − + = =⎜ ⎟
⎝ ⎠ 7

 

 
( )

( )
5
3

45 33

12 10 0 10 0 40 0
0 30 2 1

D
− + −

= =
−− +

= + >  

 
D  >  0   and   fxx  <  0    ⇒   maximum 
 
(−1, ± 2):  z  =  f (−1, ± 2)  =  2(−1)  +  (−1)(± 2)2  +  5(−1)2  +  (± 2)2   
 
        =  −2  −  4  +  5  +  4  =  3 

( )22 4
0 4

4 0
D

− ±
= = − ± =

±
16−  

 
D  <  0       ⇒   saddle point 
 
Therefore the critical points are  
 
Minimum at (0, 0, 0) 
Maximum at ( )5 125

3 27,0,−  

Saddle points at (−1, −2, 3) and (−1, 2, 3) 
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Example 2.6.3   
 
Find all extrema of   z  =  f (x, y)  =  x2  −  y2   
 

2 , 2f x y= −
K
∇  
 

f = ⇒0
KK

∇  
 
  (x, y)  =  (0, 0)  only. 
 
f (0, 0)  =  0 
 

2 0
0

0 2
xx xy

yx yy

f f
D

f f
= =

−
<  

 
Therefore the only critical point is a saddle point at (0, 0, 0). 
 
The surface is an hyperbolic paraboloid. 
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Example 2.6.4   
 
Find and identify the nature of the extrema of   ( ) 2 2, 1f x y x y= − −  . 
 
The domain of  f (x, y)  is the circle   x2 + y2  =  1  and all points inside it. 
 
( ) ( )1/ 22 2, 1f x y x y= − −  

 

( )
2 2 2 2 2 2

1 2 2 1, ,
2 1 1 1

x y ,f x y x y
x y x y x y
− −

⇒ = = −
− − − − − −

K
∇  

 
Inside the domain,  f and its partial derivatives are well defined everywhere,  
except that the gradient diverges everywhere on the boundary. 
Therefore the only critical points to consider are types (1), (3) and (4). 
 
Type (4) [zero gradient]: 
Inside the domain,  ∇f  =  0    ⇒   (x, y)  =  (0, 0)  only. 
f (0, 0)  =  1 
 
However,   0  <  1  −  x2   −  y2   <  1  everywhere else in the domain 
⇒ f (x, y)  <  f (0, 0)   everywhere else in the domain. 
⇒ there is an absolute maximum at (0, 0, 1). 
 
Types (3) [undefined gradient] and (1) [the boundary]: 
Everywhere on the boundary,    1  −  x2   −  y2   =  1  −  1  =  0  
and   0  <  f (x, y)   everywhere else in the domain. 
  
⇒ the absolute minima are all points on the circle  x2 + y2  =  1,  z = 0. 
 
[The surface is the upper half of the sphere   x2 + y2 + z2  =  1 .]  
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2.7 Lagrange Multipliers  
 
In order to obtain an appreciation for the geometric foundation for the method of 
Lagrange multipliers, we shall begin with an example that could be solved in another 
way. 
 
Example 2.7.1   
 
A farmer wishes to enclose a rectangle of 
land.   One side is a straight hedge, more than 
30 m long.   The farmer has a total length of 
12 m of fencing available for the other three 
sides.   What is the greatest area that can be 
enclosed by the available fencing? 
 
The function to be maximized is the area enclosed by the fencing and the hedge: 
 
 A(x, y)  =  x y    
 
The constraint is the length of fencing available: 
 
 L(x, y)  =  x + 2y  =  12  
 
There are additional constraints.   Neither length may be a negative number.  
Therefore any solution is confined to the first quadrant of the  (x, y) graph. 
 
Superimpose the graph of the constraint function  L(x, y) = 12 on the contour graph of the 
function  z  =  A(x, y) : 
 

 
 
The least value of  A(x, y)  is zero, on the coordinate axes. 
At  (0, 6), two 6-metre segments of fence are touching, enclosing zero area. 
At  (12, 0), all of the fence is up against the hedge, enclosing zero area. 
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As one travels along the constraint line  L = 12  from one absolute minimum at (0, 6) to 
the other absolute minimum at (12, 0), the line first passes through increasing contours of 
A(x, y), 
 

( )6 34, 3 8.5A − + = 1   

( )6 2 7, 3 7 4A − + =    

( )6 18, 3 4.5A − + = 9    

A(4, 4)  =  16 
 
until, somewhere in the vicinity of (6, 3), the area reaches a maximum value, then 
declines, (for example,  A(8, 2) = 16), back to the other absolute minimum at (12, 0). 
 
At the maximum, the graph of L(x, y) = 12 just touches a contour of A(x, y). 
 
The two graphs share a common tangent there. 
 
⇒ gradients are parallel 
 

A Lλ⇒ =
K K
∇ ∇  

 
, 1y x λ⇒ = , 2  

 
Therefore solve the system of simultaneous equations  
 
 y  =  λ   
 
 x  =  2λ   
 
 x  +  2y  =  12     (the constraint) 
 
Solution: (x, y)  =  (6, 3). 
 
From the graph,  A is a maximum at (6, 3). 
 
Amax  =  A(6, 3)  =  6×3  =  18 m2 . 
 
 
 
 
 
 
 
λ  is the Lagrange multiplier. 



ENGI 2422 Lagrange Multipliers Page 2-33 

To maximize  f (x, y)  subject to the constraint  g(x, y)  =  k:  
 

 
As one travels along the constraint curve  g(x, y)  =  k, the maximum value of  f (x, y) 
occurs only where the two gradient vectors are parallel.   This principle can be extended 
to the case of functions of more than two variables. 
 
General Method of Lagrange Multipliers   
 
To find the maximum or minimum value(s) of a function  f (x1, x2, ... , xn) subject to a 
constraint   g(x1, x2, ... , xn)  = k, solve the system of simultaneous (usually non-linear) 
equations in (n + 1) unknowns: 

∇f  =  λ ∇g 
g  =  k 

where  λ  is the Lagrange multiplier. 
Then identify which solution(s) gives a maximum or minimum value for  f. 
 
This can also be extended to the case of more than one constraint: 
 
In the presence of two constraints   g(x1, x2, ... , xn)  = k  and  h(x1, x2, ... , xn)  = c , solve 
the system in (n + 2) unknowns:  

∇f  =  λ ∇g + μ ∇h 
g  =  k 
h  =  c 
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Example 2.7.2   
 
Find the points, on the curve of intersection of the surfaces   x + y − 2z  =  6   and  
2x2  +  2y2  =  z2  , that are nearest / farthest from the origin. 
 
The maximum and minimum values of distance d occur at the same place as the 
maximum and minimum values of  d2.    [Differentiation of d2 will be much easier than 
differentiation of d.] 
 
The function to be maximized/minimized is  
 
 f (x, y, z)  =  d2  =  x2  +  y2  +  z2   
 
The constraints are  
 
 g(x, y, z)  =  x  +  y  −  2z  =  6  
and 
 h(x, y, z)  =  2x2  +  2y2  −  z2  =  0 
 

f g hλ μ= +∇ ∇
K K K

∇  
 

2 , 2 , 2 1, 1, 2 4 , 4 , 2x y z x y zλ μ⇒ = − + −  

Note that f, g and h are all 
symmetric with respect to 
(x, y).   It then follows 
that, at any critical point,  
 y  =  x . 
 
Equation (2) is redundant, 
which allows for a faster 
solution than is shown 
here. 

 
⇒ 2x(1 − 2μ)  =  λ    (1)  
 
 2y(1 − 2μ)  =  λ    (2)  
 
 2z(1 + μ)  =  −2λ    (3)  
 
 x  +  y  −  2z  =  6  (4) 
 
and 2x2  +  2y2  −  z2  =  0  (5) 
 
(1) − (2)   ⇒ 2(x − y)(1 − 2μ)  =  0   
 
⇒ y = x    or    2μ  =  1. 
 
Case  2μ  =  1: 
 
(1) or (2)   ⇒  λ  =  0 
 
(3)   ⇒    z = 0   [or  μ = −1, which contradicts 2μ  =  1.] 
 
(5)   ⇒    2(x2  +  y2)  =  0   ⇒    (x, y) = (0, 0)  only. 
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Example 2.7.2  (continued) 
 
But (4)   ⇒    0 + 0 − 0  =  6    -    impossible! 
 
Therefore   2μ  ≠  1. 
 
 
Case  y = x:   
 
(4)   ⇒    2x  −  2z  =  6   ⇒    z  =  x − 3  (6)  
 
(5)   ⇒    4x2  −  (x − 3)2  =  0 
 
        ⇒   4x2  −  x2  + 6x  −  9  =  0 
 
        ⇒   3(x2  + 2x  −  3)  =  0 
 
        ⇒   3(x + 3) (x − 1) =  0 
 
        ⇒   x  =  −3  or  x  =  1. 
 
x  =  −3    ⇒    y  =  −3  
 
(6)   ⇒    z  =  −6  
 
f (−3, −3, −6)  =  (−3)2  +  (−3)2  +  (−6)2   
 
        ⇒   d2  =  9(1 + 1 + 4)  =  54. 
 
x  =  1    ⇒    y  =  1  
 
(6)   ⇒    z  =  −2  
 
f (1, 1, −2)  =  12  +  12  +  (−2)2   
 
        ⇒   d2  =  1 + 1 + 4  =  6. 
 
These are the only critical points.   Therefore  
The nearest point is (1, 1, −2)  and  the farthest point is (−3, −3, −6).  
 
[The surfaces are a plane and a right circular cone. 
The curve of intersection is an ellipse.] 
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2.8 Miscellaneous Additional Examples   
 
Example 2.8.1   
 
A window has the shape of a rectangle surmounted by a semicircle.   Find the maximum 
area of the window, when the perimeter is constrained to be 8 m. 
 
The function to be maximized is  
 
( ) 21

2, 2A r h rh rπ= +  
 
The constraint is the perimeter function 
 
( ) ( ), 2 2 2P r h h r h r h rπ π= + + + = + + = 8  

 
Single variable method:  
 

( )8 2
8

2
r

P h
π− +

= ⇒ =  

( ) ( )( ) 2 21
2

48 2 8
2

A r r r r r rππ π +⎛ ⎞⇒ = − + + = − ⎜ ⎟
⎝ ⎠

 

 

( )8 4dA r
dr

π⇒ = − +  

 
80 o

4
dA r
dr π

= ⇒ =
+

nly.  

 
The only other critical points are on the domain boundaries, at  
r = 0 (when A = 0, clearly an absolute minimum)  and at  h = 0 (when  A = ½πr2). 
 
Inside the domain,  r > 0  and  h > 0  ⇒   A > 0  (and  A  is differentiable throughout). 
 

Therefore  A  must be at either a maximum or a point of inflexion at 8
4

r
π

=
+

. 
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Example 2.8.1  (continued) 
 
 

( )
2

2

80 4 0 maximum at .
4

d A r
dr

π
π

= − + < ⇒ =
+

 

 

At the maximum, ( ) ( ) ( )8 2 4 28 8
2 2 4

r
h

π π π
π π

− + + − +⎛ ⎞
= = =⎜ ⎟ 4+ +⎝ ⎠

 

2
2

max
8 8 4 8 32 4.48 m

4 2 4 4
A π

π π π
× +⎛ ⎞⎛ ⎞⇒ = − = ≈⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠

 

  
The maximum area occurs when 
 

8 1.12 m .
4

r h
π

= = ≈
+

 

 
 
 
 
 
 
 
 
Lagrange Multiplier Method:  
 
( ) 21

2, 2A r h rh rπ= +  
 
( ) ( ), 2 2 2P r h h r h r h rπ π= + + + = + + = 8  

 
A Pλ=
K K
∇ ∇  
 

2 , 2 2,h r rπ λ π⇒ + = + 2  
 
⇒         2h  +  πr  =  λ (π + 2)  (1)  
 
                   2r  =  2λ    (2) 
 
and 2h + (π + 2)r  =  8   (3) 
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Example 2.8.1  (continued) 
 
(2)    ⇒   λ = r    ⇒   (1) becomes 
 
 2h  +  πr  =  r (π + 2) 
⇒ 2h  =  2r  
⇒ h  =  r . 
 
(3)    ⇒   (π + 4) r  =  8 
 

Therefore 8 1.12 m .
4

r h
π

= = ≈
+

 

At this critical point, 
2

28 8 4 8 32 4.48 m
4 2 4 4

A π
π π π
× +⎛ ⎞⎛ ⎞= − = ≈⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠

 

 
 

The ends of the constraint line are at  ( ) ( ) 8, 0, 4 ,
2

r h B C
π
⎛ ⎞= ⎜ ⎟+⎝ ⎠

, 0 . 

 
At  B,         A = Amin  =  0 
 

( )

2
2

2
1 8 32At , 3.80 m
2 2 2

C A ππ
π π
⎛ ⎞= = ≈⎜ ⎟+⎝ ⎠ +

 

A > 0 and differentiable at all points between B and C. 
 

Therefore the maximum area of 32
4π +

 occurs at 8 1.12 m .
4

r h
π

= = ≈
+
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Example 2.8.2   
 
Find the local and absolute extrema of the function  

( ) 2 23, .f x y x y= +  
 

( ) ( )
( )

2 / 32 2

22 23

1 22 0
3 3

f xx y x
x x y

−∂
= + + =

∂ +
 

 
By symmetry,  

( )22 23

2

3

f y
y x y

∂
=

∂ +
 

 
f  is continuous on all of ú2,  
(therefore there is no boundary to check and no critical points of types (1) or (2)), but  
| fx |  →  ∞   and  | fy |  →  ∞  as  (x, y)  →  (0, 0)   (critical point of type (3)). 
fx ≠ 0  and  fy ≠ 0 everywhere else (no critical points of type (4)). 
 
Therefore  (0, 0) is the only critical point. 
 
But  f (0, 0) = 0  and  f (x, y)  >  0   for all (x, y) except (0, 0). 
 
Therefore the only critical point is an absolute minimum value of 0 at (0, 0).  
 
[There is a cusp at the origin.] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Any vertical cross-section containing the z axis.] 
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Example 2.8.3   
 
Find the maximum and minimum values of the function  

V (x, y)  =  48xy  −  32x3  − 24y2 
in the unit square   0  <  x  <  1 ,  0  <  y  <  1 . 
 
[The full solution to this question is available on the course web site, at 
"www.engr.mun.ca/~ggeorge/2422/notes/c2maxex1.html".] 
 

−32  ≤  V(x, y)  ≤   +2 , 
 

with the absolute maximum of  V  at  (x, y) = (½, ½) 
 

and the absolute minimum of  V  at  (x, y) = (1, 0). 
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Example 2.8.4   
 
A hilltop is modelled by the part of the elliptic paraboloid  

( )
2 2

, 4000
1000 250

x yh x y = − −  

that is above the x-y plane.   At the point P(500, 300, 3390), in which direction is the 
steepest ascent? 
 

,
500 125

x yh − −
∇ =
K

 

 
121,
5P

h⇒ ∇ = − −
K

 

 
Therefore the steepest ascent is in the direction of the vector  

5, 12− −  

 
Note that this vector does not point directly at the summit. 
The summit is on the z axis. 
From the point P(500, 300, 3390), the summit is in the direction  〈−5, −3〉. 
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Example 2.8.5   
 

Show that ( ) ( ) (( )1,
2

u x t f x ct f x ct= − + + )  satisfies  
2 2

2
2 2

u uc
t x

∂ ∂
=

∂ ∂
. 

  
Let    r  =  x  −  ct   
 
and    s  =  x  +  ct   
 
Then 

 
 

u u r u
t r t s

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
s
t

 

 

     ( ) ( )1 1
2 2

df dfc c
dr ds

= − + +  

t t
tt

u r uu
r t s t

∂ ∂ ∂ ∂
⇒ = ⋅ + ⋅

∂ ∂ ∂ ∂
s  

 

           ( ) ( )
2 2 2 2

2 2
2 2 2

1 1
2 2 2

d f d f c d f d fc c
dr ds dr ds

⎛ ⎞
= − + + = +⎜ ⎟

⎝ ⎠

2

2  

 
1 11 1
2 2

u u r u s df df
x r x s x dr ds

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ = × + ×

∂ ∂ ∂ ∂ ∂
 

           ( ) ( )
2 2

2 2
2 2

1 11 1
2 2 2

1
xx t

d f d fu u
dr ds c

⇒ = + = t  

 
Therefore utt  =  c2 uxx . 
 
[Thus  u(x, t)  =  ½(f (x − ct)  +  f (x + ct))  satisfies the wave equation  
-   and  f (r)  can be any twice differentiable function of r ! 
 
This function models a pair of identical wave forms, moving at speed c in opposite 
directions.] 
 

[End of Chapter 2] 
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