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4. Second Order Linear Ordinary Differential Equations

The general second order linear ordinary differential equation is of the form

d’y dy

— + P(x)— +Q(x)y = R(x

2 ()L v o)y = R(Y)
Of the second (and higher) order ordinary differential equations, only linear equations
with constant coefficients will be considered in this chapter:

d> d
KZ+1Dd—i+Qy:1'e(x)

4.1 Complementary Function

The homogeneous equation associated with this ODE is

d’y dy

I + P e + Qy =0
The principle of superposition of solutions of the homogeneous equation is valid because
it is linear. That is, if y = u(x) and y = v(x) are both solutions of the homogeneous
ODE, then so alsois y =cj u(x) + ¢, v(x), where c¢; and c¢; are any constants.
Adding any solution of the homogeneous ODE to a particular solution of the original
ODE generates another solution of the original ODE.

Thus the general solution (abbreviated as G.S.) of

d* d
dx{ + P% + Qy = R(x)

can be partitioned into two parts:
the complementary function (C.F., which is the general solution of the associated
homogeneous ODE) and a particular solution (P.S.).

If y= ¢™ is a solution to the homogeneous ODE, then

2T+ PalT+ 0" =0

But eM > (0 for all real A and x.

from which the auxiliary equation (A.E.) follows:
M+ PL+Q0=0

[The choice of y = ¢™ as a trial solution to the homogeneous ODE is justified later, on
page 4-08, when a more general method for finding the complementary function is
introduced.]
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The solution of the auxiliary equation 4> + PA + Q = 0 is

l_—Pi«/P2—4Q_/1;L

= = A
2

Distinct roots (4; # 4,) = the complementary function is

Ve (x) = cleﬂlx + cze/lzx

[The case of equal roots will be dealt with later, on page 4.07 .]

Example 4.1.1
Solve the differential equation
y'+ 3y -4 =0

The auxiliary equation is
AP+31-4=0

= A+t4H(A-1)=0

= A= —4,+l1.

The complementary function (which is also the general solution) is
y=ye-cae *oe

Checking the solution:

= Y+ 3 -4y =
e U6+3(=4)—4(1) + e (1 +3 -4)=0 v
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Example 4.1.2

Solve
y'=2'+ 2y =0
A.E A2 —22+2=0
+ _
= /1=2‘ 4 8:111
2
C.F.

= e  (c1(cosx — jsinx)+ ¢y (cosx + jsinx))

X .
= Yo = e _(c3c08x + ¢48inx)

In general, when the roots of the auxiliary equation are a complex conjugate pair of
values, 4 = a=+bj, then the complementary function is

ye(x) = ¥ (cl e/ 4 ¢ ejbx) = ™ (¢, cosbx + ¢, sinbx)

(where the arbitrary constants are related by ¢; = ¢; + ¢; and ¢4 = j(c2 — ¢1))
or

ye(x) = A4 e™ cos(bx — 0)

{where A = e +¢” , cosd =

or

and sind _—c“]

5
N Vo' +¢,)’
ye(x) = A ™ sin(bx — 5)

and coso = c—“]

, c
where 4 = ¢’ +¢ , sind = —— —
Ve +e, Ve +e,

Note that, for an auxiliary equation of this type, with real coefficients, where the solution
is constrained to be real, the arbitrary constants ¢; and ¢4 are both real, but ¢; and c;
often are not.  For this reason, the forms involving the trigonometric functions are
usually preferred.
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Example 4.1.3

A spring, that is not at its natural length, experiences a restoring force R that is
proportional to the extension s beyond the natural length and is directed towards the
equilibrium position. In the absence of friction, this would lead to undamped simple
harmonic motion.  Let us suppose that there is also a friction force D that is
proportional to the speed and acts in the opposite direction to the velocity.

R D
—
——— Natural length ——— 5 L
A —
v

Restoring force proportional to displacement =

Therefore the ODE governing the motion of the spring is

mﬂ = —cs — bv
dt

Therefore
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Example 4.1.3 (continued)

Suppose that m = 1kg, b=6kgs ', c=25kgs > and that the spring begins at its
equilibrium position, but moving at 2 m s™' to the right, so that s(0) = 0 and v(0) = 2, then
the ODE becomes

s" + 6s" + 255 =0

AE: 12 +61+25=0

6 + _
P 6 + 36 100:—3i4j
2
OR
CF.: yc=s=4 e ' sin(4t - 9) s = e ' (ccos 4t + d sin 4f)
which is damped harmonic motion. Initial conditions:
Speed: s0)=0 = 0=c

W(it) = s'(6) = Ae ' (4cos(dt— ) — 3sin(4t—9)) s =de sindt

Initial conditions: v=de (-3 sin 4z + 4 cos 41)
s(0) =0 = 0 = 4sin(—9) v0) =2 =
v(0) =2 = 2= A(4cos(—0) — 3sin(—9)) 2 =4d = d:%

= 6 =0 (or 6§ = nxz, nelk)

_ 2 _
and A_Z_

N|—

The complete solution, in its simplest form, is

Note that if 5 =0 (no friction at all), then the system is totally undamped and exhibits
simple harmonic motion:

where k= \/E
m

s(t) = A sin (kt - §)
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The General Spring Problem

d’s
— +

dr’
Case 1: (ﬁjz < 4(£j
m m
A = complex conjugate pair
— damped oscillations.

s(t) = Ae “sin(kt — ), where

b ds c
— 4+ —5 =0
m dt m

;-"'"'-’HJ‘
™
1
™

Y

N\

K

£
a;ﬁk_lﬂ_gz
2m’ 2\ m m /
This is the under-damped case.
2
5
Case 2: (ﬁj > 4(£j . +
m m e
/. = distinct real negative pair \
}E
A A
s(t) = Ae " | Be 21, where
or
F 5

2
SN T
m m

This is the over-damped case.

o (-4

A = real negative equal roots

This is the critically damped case.

i ¢

[The graphs are similar to those for the over-damped case. ]

b

The solutionis s(7) = (At +B)e ™, where 1 = —.

2m
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Complementary Function when the Auxiliary Equation has Equal Roots
A1 = A2(= 1) = the ODE becomes

Y =2y + 2ty =0
One solution to this equation is C, &

We require another solution that is independent of this one (so that there will be two
distinct arbitrary constants of integration in the complementary function).

Try f(x) = szeM
[This second form arises naturally from the operator method, on page 4.08.]
Then f'(x) = G (Ax+1)e"
and  f'(x) = G (APx+A+) +0) "
= S0 = 22f0) + A1 (0) =
Co(ix+20—22x =22 +22%) " = 0
Therefore f(x) = Crx ¢™ is another solution to the homogeneous ODE.

Therefore the C.F. is

Ve (x) = (C] +C2x)e/1x

Example 4.1.4

Solve
y'—6"+9 =0

AE: 12-61+9=0
= (A-3’=0 = 1=3,3

Therefore y = yc = (A4x + B) e3x
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The Operator Method

The homogeneous ordinary differential equation with constant coefficients,
d’y
dx’
can also be written, using differential operators, in the form

d d
(5*‘]{1}(54‘]%})} =0

+Pﬂ+Qy=0
dx

Justification:

dx? dx
d’y dy
= dx2 + (kl +k2)5 + klka = 0

= kitkh=Pand kik = Q.

— —k; and —k, are the solutions to the auxiliary equation 1> + PA + O = 0.

The second order ODE can therefore be re-written as a linked pair of first order linear
ordinary differential equations [the method of reduction of order]:

d
—+k |6 =0, A
() "
where
dy
0= —+ky. (B)
dx
Solution:

(A) is linear
0 + k6 =0

t )

P R
h=[Pdx = k[lde = kx
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Operator Method (continued)

jehRdx = dex =0

= = | + = a* = kyx
=e h = + = C
H(X) e ( e R dx C) e (0 C) Ce

OR
(A) is separable

a9 _ kO = 49 _ —k [ dx
dx 0

= IO =—-kx+C

—kx+C —k —k
e = el I

f— H(X) = = Cle

Feed the solution from ODE (A) into ODE (B):

y 4+ ky=Ce

Tz -
P R

h= [Pdx = k,[1dx = kx

IehR dx = Iekzx(cl e_klx)dx = Clje(kz_kl)x dx

There are two cases to consider:

ky—k
e( ) —ky)x

kz _kl
IehR dx = C/x
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Operator Method (continued)

kz 75 k] .
(ky =k )x

y(x) = e_kzx L(j]e— + Cz = Ae_klx + Be_kzx
kz - k1

ko = k(= k)

y(x) = e_kzx(Clx +C,) = (Ax+B)e_kx

Summary for the Complementary Function:

ODE: y'"+ Py + Qy =0
AE. M+ PL+0O=0

A A
A real and distinct = y. = Ae Ty e
/ real and equal = y. = (Ax+B) X

A complex conjugate pair
= y. = e""(Ccosbx + Dsinbx), where a=Re(4), b:‘lm(/l)‘
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4.2 Particular Solution (Undetermined Coefficients)

The general solution to
d’y
dx’
is the sum of the complementary function and any one solution (the particular solution)
that we can find to the original inhomogeneous ODE.

+ PY 0y = R(x)
dx

If the function R(x) does not contain any part of the complementary function, then
assume that the particular solution yp(x) is of the same form as R(x).

Example 4.2.1

Find the general solution of the ODE yr+ 2y = 3y =x + e
AE: 22+2.-3=0

= A+3)A-1H) =0 = 1=-3,1

CF.: yc=4 e+ Be

P.S.:  R(x) contains neither ¢ nore' .

R(x) is the sum of a quadratic function and a

Therefore try the sum of a quadratic function and a multiple of e ,
where all four coefficients are to be determined.

yp=ax2+bx+c+dezx

’ 2x

= ' = 2ax+ b+ 2de
= yp''= Da+ 4d ™

= yp'" t 2yp" — 3y =

2a + 4d er
+ dax + 2b + 4de>*
+ 3ax* - 3bx - 3¢ - 3d er

2 2x

= 1x + 0x + 0 + 1le
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Example 4.2.1 (continued)
Matching coefficients:

X -3a=1 = a=-

W|—

¥iooo4(-4) -3 =0 = b=-

Ol

~

oo 2(-) +2(-3)-3c=0 = c=—§[¥J=_l

[\

7

e (4+4-3)d =1 = d=1

G.S.: y(x) = ye(x) + yp(x)

Therefore

y(x) = 4™ + B + L — (9% +12x+14)

General Method:

The general solution to

d’y dy
24 pE g = R(x
dx’ dx Qy (x)
is the sum of the complementary function and any one solution (the particular solution)

that we can find to the original inhomogeneous ODE.

If the function R(x) does not contain any part of the complementary function, then
assume that the particular solution yp(x) is of the same form as R(x).

If R(x)=¢€",
then try yp =c €™, with ¢ to be determined.

If R(x) = (a polynomial of degree n),
then try yp = (a polynomial of degree n), with all (n + 1) coefficients to be determined.

If R(x) = (a multiple of cos kx and/or sin kx),
then try yp = c cos kx + d sin kx , with ¢ and d to be determined.

This method can be extended to cases where
R(x) = (a sum and/or product of the functions above).

But: if part (or all) of yp is included in the C.F., then multiply y» by x.
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Example 4.2.2

Consider a model of the simple series RLC
circuit, where the constants R, L, C are the
resistance,  inductance @ and  capacitance
respectively, E(¢) is the applied electromotive z 7
force, ¢ is the time and /() is the resulting o

current.

Examine the voltage drops around the circuit:

|
QU

C: 2 and note that / = d—Q
C dt

AE.
LIS
L LC
2
2| L L LC
Let D=—(R2—4—Lj, then /1=iij@
C 2L 2L

[Note that the numerical value of the capacitance C is usually so minute that it is safe to
assume that D > 0.]

CF.
Yo = e_Rt/(zL)LA Sin% + Bcos\/Bt]

2L
which is the transient term.
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Example 4.2.2 (continued)

Particular solution

If E(t) = E, (constant), then

[()=yc+0 = limI(t) =0

t—

Suppose that the e.m.f. is sinusoidal, so that E(r) = E, sin ¢, then

1 dE _ Ewcosot

L dt L
P.S.: Try
yp = asinot + b cos ot
= yp'= —bo sin ot + aw cos wt
= w"= —aw’ sin of — b’ cos wt
:> " + E / + L _
Vp 7 Yp IC Yp
( , boR aj. ( ,  aoR bj
—-aw”- - —— + — |sinwt + | -bo” + + — |[cos wt
L LC L LC
E o
= Osinwt + —2>—coswt
o boR _ a4 Lz o - a(l—a)zLC)
L LC 10
-, ok [ _a (1 - a)zLC) PR
L 0] LC L
_ aoR(wRCC) [a(l - @'LC) | Ew
@RC LC @RC LC L
E o wRC LC E,wC(wRC)
= a = X > ; 3 = 2 ; >
L («RC) + (1 - @’LC)  (@RC) + (1 - &’LC)
1 - @’LC E,oC(wRC) E,wC(1 - &’LC)
= b= X =

ORC " (oRCY + (1 - @’LC)  (@RC) + (1 - @’LC)
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Example 4.2.2 (continued)

Therefore the particular solution is

an)C((a)RC)sina)t + (1 —~ a)zLC)cosa)t)
= =

Vp

(@RCY + (1 - &’LCY

which is a steady-state sinusoidal response to the sinusoidal electromotive force, but with
wRC

\/(ch)2 + (1 - @’LCy

a phase difference of & = arccos

The total current is then

I(t) = eié% (A sin(@ tj LB cos(@ t]] N (EOwC ((coRC)sin ot + ( — cozLC)cos (ot)]
2L 2L

(@RCY +(1- *LC)

transient steady — state

As a specific example, if E(f) = 17sin2t, R = 120Q, C = I mF and L = 10 H,
then it can be shown that

I(t) = e_6[(A sin8¢ + B cos8t) + %(sin2t+4cos2t)

The transient current, /. (t) = (A sin8t + B cos 8t) , dies away very quickly.

Its magnitude falls permanently to under 1% of the total current in less than a second.

The values of the two arbitrary constants can be found from the initial conditions, but,
given that the complementary function becomes negligible in a very short time, one often
does not try to evaluate them.

Example 4.2.3

Find the complete solution of the ODE
yrE2y ty=et , w0)=y'(0)=1

AE: A2+22+1=0 = Ar=-1,-1.

CF.:. yc=UUx+B)e.
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Example 4.2.3 (continued)

PS.: Both y= ¢~ andy= xe " are included in the complementary function.
Therefore try yp= a e
VP +2yp tp = =

((2a —4ax +a xz) + (4ax —2a xz) + (a xz) e’ =1le"
= (@-2a+a)x*+(-4a+4a)x+QRa)e” = 1e™
= a =12

G.S.:
y(x) = (lx2 +Ax+B) e

2
Now impose the initial conditions on this general solution:
y0)=0+0+Be=1 = B=1
Y'x) = (x+A4-Yx*—Ax—B) e
= ' 0)=0+4-0-0-1)e"=1 = 4-1=1 = 4=2

Therefore the complete solution is

y(x) = (%x2 +2x+1) e

Note that a complete solution requires additional information (often in the form of
initial conditions). Two pieces of information are needed in order to evaluate both
arbitrary constants of integration. However, do not substitute these conditions into the
complementary function; wait until the general solution has been obtained.
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4.3 Particular Solution (Variation of Parameters)

The method of variation of parameters is a more general method for finding the particular
solution. It is successful even in some cases where the method of undetermined
coefficients fails. However, where both methods are available, the method of
undetermined coefficients is generally faster to use.

If the complementary function for the ODE

a4 d
dxf + Pd—i + 0y = R(x)

is ycox) = Ciyi(x) + Gy ya(x),
then the particular solution is

yr(x) = u(x) yi(x) + v(x) ya(x),
where the functions u(x) and v(x) need to be determined.
We need two constraints in order to pin down the functional forms of u(x) and v(x).

One constraint is that u(x) yi(x) + v(x) y2(x) be a particular solution of the ODE.
We have considerable freedom as to what the other constraint will be.

yp=uyrt vy
= Yrp=uyrt uytt vyt vyh
Impose our “free” constraint, u'y; + v'y, = 0, then
yr =uyt t vy
= Y =u'yh o ouy't ¥ viyht vy
= Y+ Pyp+ Qyp =
u(" + Py + Qy) + v+ Pyh + Qy) +u'yit + viyh = R(x)
But  yi(x) and y»(x) are both solutionsto y”"+ Py"'+ Qy = 0
Constraint (2) then resolves to
u'yt + v'yh = R(x)

The pair of constraints leads to the matrix equation

K MEH
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Define the Wronskian function W(x) to be
W
/4 x) = det
)= |
together with the associated determinants
0 0
lede‘{ yf}:—yzR and Wz:det[yl, }:+y1R
R y R
then Cramer’s rule yields solutions for «'and v':
W= and v =22
/4
Therefore a particular solutionis yp = uy; + vy, , where
ux) = _J’yz(x)R(x) e, vx) = +J)’1(X)R(x) de, W(x) = yl, yf
W(x) W(x) Vi Y,

Note that we can ignore the arbitrary constants of integration in both integrals, because
Ay, and B y, are both solutions of the homogeneous ODE and can therefore be

absorbed into the complementary function.

Example 4.3.1 (identical to Example 4.2.1)

Find the general solution of the ODE Y+ 2y = 3y =X+ e

AE: 22 +2.-3=0
= (A+3)UA-1D=0 = i=-31

-3
ylzex, yzzex,RZx + e
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Example 4.3.1 (continued)

Particular Solution by Variation of Parameters:

—3x X
e e

W(x) = de{yl, yf} = det[ - x} = 4o
Yo 0 —3e e

0
W, = de‘{ yf} = —-»R = —ex(x2+ezx)
R y,
LW, —(xzex+e3x) 203% 4 5%
= u' == — = -
w 4o ¥ 4
D 1
2 3
= u = —lj.(xze3x+esx)dx X e
4 +
2x le3x
3
2 le?’x
9
1 e3x 2 S5x "
= = —— —(9x —6x+2)+—e 0 1 3%
4\ 27 E
0
W, = de{y], } =+yR =e 3x(x2+ezx)
»n R
, VVZ xze3x+ x_xzex+ex Q l
= VvV = W oy 4 5 .
4€ X e
1 2 —x | x +
= V—Z (xe +e )dx o o
2 +ex
N Y 2 X +
= V—Z(e (—x —2x—2)+e ) 0 o
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Example 4.3.1 (continued)

Yp = Uy + vy, =

3
i{—%(%cz —6x+2) — %esx]e_h + %(—e_x(x2 +2x+2) + ex)ex}

_ 1 L(—9)62+6x—2—27x2—54)c—54) (=L i)e
427 5

-1 i(—36x2 —48x-56) + 4 2
4127 5

Therefore

1 2x 1 2
= —e — —|9x" +12x+14
Ty 27( )

and the general solution is

y(x) = 4 + Be® + %eb‘ - 21—7(9x2 +12x + 14)
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Example 4.3.2
Here is a case that cannot be solved by the method of undetermined coefficients:
y"+y = tanx
R(x) =tan x is not one of the standard forms.
AE: A2+1=0
= A=xj
CF.
Ve = Asinx + Bcosx

by Vs

Let s=sinx and ¢=cosx

!

then yi=s, m=c, Yi=c, yhr=-s

ViV s C

vy

2

= W= = -5 ¢ = -1

c -5

)
R = tanx = —
c

0
I/V1 :‘ y? ——yzR:—C(£)=—S
R c
' I/V] -S
= U = — = — =+
w -1
= uzj.sdx:—c
2
o[ 8- n=o2) -2
y R c c
W, s? —(1—02)
= VvV =-2=""= = COSX — secx
w —c c
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Example 4.3.2 (continued)

Vp = U-Y +V-Yy, = —cCS + (s - ln|secx+tanx|)-c
= —cln|secx+tanx|

[which is clearly of a different form from R(x).
It is not a simple linear combination of any trigonometric functions. |

y =yc t o

General solution:
y(x) = Asinx + cosx(B - 1n|secx+tanx|)

Example 4.3.3

Use the variation of parameters method to find the particular solution, then find the
general solution of the ODE

y' -ty =€
AE: 17 -20+1=0
= (A-1D)'=0 = i=11
CF.: yc= (Ax+B)eé

P.S.

X X
xe e

(x+1)e" e

Yo W

W: / !
Yo W

= (x—(x+1))ezx = X
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Example 4.3.3 (continued)

0
VVl:Ry?__zR:_exex:_ebc
Ya
, VI/] _eZX
= u =—= =+1 = u=x
/4 _eZX
W, yll R = + R = xe*e* = x**
g
) sz xe2x x2
= V=—=—F-=-x = v=-—
W e 2

Note:
Using the method of undetermined coefficients,

R(x) = ¢, but ¢ and xe" are both in the complementary function.

Therefore the trial function for the particular solutionis yp = cx*¢".

Upon substituting this into the ODE, we find ¢ = 1/2.
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Modified Method of Undetermined Coefficients

If part of the complementary function, yj, is included in the function R(x), then try
yp = f(x)y1 as aparticular solution. Substitute into the ODE and solve for f'(x).

Example 4.3.3 (again)

Yo k=

ye = (Ax+B)e'

Ty = f(0¢"

= W=+ Ne

= V=AY

= YR Y= (T2 S -2 -2 e =
=  f"x) =1

= fx) =x

= ) = %x e

The general solution then follows,

Check on the general solution:

y'(x) = ((%xz +Ax+B) + (x+A))ex

y'(x) = ((%x2+Ax+B+X+A) * (x+A+1))ex

= Y -2y +y-=
($-2(4)+3)%* + ((4+2)-2(a+1)+ 4)x + ((2A+B+1)—2(A+B)+B)}ex

=(0+ 0+ 1)e* :R(x)
v
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4.4 Higher Order Linear Ordinary Differential Equations

The n™ order ordinary differential equation

dny dn—ly dn—2y d2y dy
+a +a +-+a ,——+a,,—+a y = Rlx
A" PN 2 2 22 el ny ( )

can be solved as follows.

Form the auxiliary equation
A+ gl o+ ao Pt a A ta, =0
Find all # values for A.

Form the complementary function yc, which will be a linear combination of
ALx  Ax
e e, ei”x (except for repeated roots).

Complex conjugate pairs can be re-written in terms of sine and cosine functions.

Find a particular solution yp (by inspection, undetermined coefficients, or variation of
parameters, as extended to this higher order equation).

Write down the general solution y = yc + yp.
n initial and/or boundary conditions will be needed at this stage to evaluate all of the n
arbitrary constants of integration.

Example 4.4.1 Find the general solution of
5 4 3 2
Y 40 347 44V 40 _ g,

dx dx’ dx dx? dx

Auxiliary equation:
AP+220 =347 —427+42 =0

= A(A'+24°-317-41+4) =0

= AUA-DA*+317-4) =0

=  AUA-1)A*+41+4) =0

=  AU-1D)*@A+2)?%*=0

= A1=0,1,1,-2,-2.

Complementary function:
ye=A+ Bx+C) e + (Dx+E)e_2x
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Example 4.4.1 (continued)

Particular solution:
Cannot try yp = ax + b because a constant is included in the complementary function.
Therefore try yp = (ax + b)x = ax® + bx

= yp = 2ax+b

= g3 = 0, = 0

ODE = 0+0—-—0—- 8z + 8ax + 4b = 8
L, _

X 8a = 8

X Ba+4b=0

= a=1, b=2.

Therefore the general solution is

y(x) =4+ (Bx+C)ex + (Dx+E)e_2x + X+ 2x

Five initial conditions would be sufficient to evaluate the arbitrary constants 4, B, C, D
and E.

Also available:
Additional tutorial example of a second order ODE
(at "http://www.engr.mun.ca/~ggeorge/2422/notes/c4tutorl2.html")

[Cauchy-Euler ODEs will not be covered in this course. ]

END OF CHAPTER 4
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