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6. Multiple Integration

This chapter provides only a very brief introduction to the major topic of multiple
integration. Uses of multiple integration include the evaluation of areas, volumes,
masses, total charge on a surface and the location of a centre-of-mass.

6.1 Double Integrals (Cartesian Coordinates)

Example 6.1.1

Find the area shown (assuming SI units).

¥
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As Ax — 0 and Ay — 0, the summations become integrals:

x=5(y=1
(Total Area) — A4 = I J. ldy |dx
y=2
The inner integral has no dependency at all on x, in its limits or in its integrand.
It can therefore be extracted as a “constant” factor from inside the outer integral.

y=7 x=5
= Ad=| [1dy
y=2

1 dx
= [yi[x]) = (7-2)x(5-1) = 5x4 = 20m’

x=1

xX=
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Example 6.1.1 (continued)

Suppose that the surface density on the rectangle is ¢ = x*y. Find the mass of the
rectangle.

The element of mass is

Am = ocA4d = ocAx Ay

- m = ||odydx =

— e
1 Sy
——

7
szy dy dx
2

1 1

-fe(fra)e - o)

217 T8 T 49-4 125-1
X 2] - X = 15x62
3 | 2 3

Therefore the mass of the rectangle is m =930 kg.

OR

We can choose to sum horizontally first:
T7p¢5 )
m = L L x“ydxdy

% ) m = I;y(jlsxz dx) dy

The inner integral has no dependency at all on y, in its limits or in
71 its integrand. It can therefore be extracted as a “constant” factor
: : from inside the outer integral.

T (peage)

which is exactly the same form as before, leading to the same value of 930 kg.
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A double integral ” f (x, y) dA may be separated into a pair of single integrals if
D

the region D is a rectangle, with sides parallel to the coordinate axes; and
the integrand is separable: f(x,y) = g(x) A(y).

X )

J
[[f(y)aa = [ [g(x)h(y)dydx
_}"2 17 b XN
D
X Yy
gl - | [e(x)as || [n(r)ay
I ! X Y1
';:1 ')::2 *
This was the case in Example 6.1.1.
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Example 6.1.2

The triangular region shown here has surface density o = x + y.
Find the mass of the triangular plate.
Y
Element of mass:

Am = cAA = ocAx Ay

y=1-x
1-x

Mass of strip = [ZO'AyJAx
y=0

e

Il
=

[
=

|

o AyJ Ax]
0

i= ﬂ 1 1
Total Mass =~ Z ((
x=0 y

11-
- m :Ij(x+y)dydx
00
T L (=
=J.{xy+y—} dx=J.x(1 x) + 0 —0|dx
0 2 4, 0
1 2 37!
:J‘l_xdxzf_x_ :l—l—O—i-O:lkg
q 2 6 2 6 3
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Example 6.1.2 (continued)

OR

We can choose to sum horizontally first (re-iterate):

I-y

I xX+y dxdy
0

S —

ol x - 1
> — .. = —k
S ERRIEEE

0 =

Generally:

In Cartesian coordinates on the xy-plane, the rectangular element of area is
A4 = AxAy.

Summing all such elements of area along a vertical y=h{x)

strip, the area of the elementary strip is

hlx)
y=g(x)

Summing all the strips across the region R, the total
area of the region is:

22

In the limit as the elements Ax and Ay shrink to
zero, this sum becomes

b ()
.[ j 1 dy dx
¥=ay=g(x)

If the surface density ¢ within the region is a function of location, ¢ = f (x, y), then the
mass of the region is

b [ h(x)
m = J‘ '[ f(x,y)dy dx
¥=a\ y=g(x)

The inner integral must be evaluated first.
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Re-iteration:

One may reverse the order of integration by
summing the elements of area A4
horizontally first, then adding the strips
across the region from bottom to top. This
generates the double integral for the total
area of the region

d (4
A = I I ldx |dy
y=c\ x=p(y)

The mass becomes

d [ a)
m = I j f(x,y)dx dy
y=c\x=p(y)

Choose the orientation of elementary strips that generates the simpler double integration.

For example,

¥

is preferable to

- j Tf(x,y)dxdy + 'Z[Jz'f(x,y)dxdy

-y 0+y
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Example 6.1.3

Evaluate 1 = [[(6x+2y”)dd
R
where R is the region enclosed by the parabola x =3* and the line x +y=2.

The upper boundary changes form at x = 1. J.
The left boundary is the same throughout R. \
The right boundary is the same throughout R.

Therefore choose horizontal strips.
12—y

I = I I(6x+2y2)dxdy

22

~
Il

_][ [3x2 + 2xy2J :;y dy
)

- Hlsay v2z-01s) - 2

= j((12—12y+3y2) + (49" -2°) - 5y4)dy

-2

= j(12—12y+7y2—2y3 - 5y*)dy
-2

r 7 1 +1
— 12 —6 2+_ 3 _ - 4 _ 5:|
I y—-0y 3y 2y Y

-2

“12—e+ Lt 1) C(24-24-20 5.3
3 2 3

Therefore
9

2

O
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6.2 Polar Double Integrals

The Jacobian of the transformation from Cartesian to plane polar coordinates (Example
2.4.1 on page 2-17) is

dA = dxdy = rdrdf

Example 6.2.1

Find the area enclosed by one loop of the curve » = cos 26.

Boundaries:
<0<+ TR g ot

0 <r<cos20; - )
4 L

EN

Area:
+7/4cos26

A:jjldA: j jlrdrde
D —-z/4 0

do

+7/4T o 7 €08260
r }

-/4L 2 0

+7/4 2
_ J- cos” 20 B 0}19
-rl4 2

+7/4
_ J- cos40 + 1d¢9

-r/4 4

. +/4
)
16 4] . 16 16

Therefore
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In general, in plane polar coordinates,

§=8

B=0
h(6)
I f(rcos@,rsin@)rdrdf
g(9)
Example 6.2.2
Find the centre of mass for a plate of surface density o = L , whose boundary is

Jx*+y

? that is inside the first quadrant. & and a are

the portion of the circle x* +)* =a
positive constants.

Use plane polar coordinates.

Boundaries: Y

The positive x-axis is the line 6= 0. o 3 2 5
The positive y-axis is the line 0 =x/2. Aryt=a
The circle is = d* , whichis r=a. |/

Mass:
k

VX +y 0 a X
/2 a

m = HadA = J.J.Erdrdﬁ
R 0 07"

= kﬁledrde - k[Tldr}[Tld&’} = k[r]0[0)7"

0

Surface density o =

kma
m =
2
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Example 6.2.2 (continued)

First Moments about the x-axis:

AM, = yam = M, = [[yodd
R

o'—-.i

2(a k
[ (rsin@)—r er do
0

r

0

a /2 214
- k_[r er- sin@ dé = k[%} [—cosé’]”/2
0 0

0
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6.3 Triple Integrals

The concepts for double integrals (surfaces) extend naturally to triple integrals (volumes).
The element of volume, in terms of the Cartesian coordinate system (x, y, z) and another
orthogonal coordinate system (u, v, w), is

AV = dxdydz = AXY2) 4y
8(u,v, w)
and
Wy vy (W) ity (v, W)
I_Uf(x,y,z)dV = J- J- j f(x(u,v,w),y(u,v,w),z(u,v,w))ﬁ(x’—y’z)dudvdw
14 w (w) uy(v,w) (u’v’ W)

The most common choices for non-Cartesian coordinate systems in R’ are:

Cylindrical Polar Coordinates:

X = rcos¢

y = rsing

z =2z
for which the differential volume is
ﬁ(x, v, z)

8(r, ¢,Z)

Spherical Polar Coordinates:
X = rsiné cos¢

dv = drdg dz = rdrde dz

y = rsin@sing
z = rcosf@
for which the differential volume is
ﬁ(x, v, z)

o(r,6.9)

dV = drdfd¢ = r’sin@drdfddg
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Example 6.3.1:

Verity the formula V' = %7[ a’ for the volume of a sphere of radius a.

2z

V=j£1dV=£

= (Iﬁ drj[]jsin@ dej[zfl d¢J

= |:%3:|a[_cosg]g[¢]§” - (%3_0](+1+1)(27r—0)

0

oSN

[r*sin0 ardo dg
0

Therefore
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Example 6.3.2:

The density of an object is equal to the reciprocal of the distance from the origin.
Find the mass and the average density inside the sphere r =a .

Use spherical polar coordinates.
Density:

1
P ==
r

Mass:
27

1o - 1]

- UdJ(;ede](j 1d¢J

: E}a[-cosﬁ]g[ﬂiﬁ ) [%2_0](+1+1)(2n—0)

0

r*sin@dr dO dg

N |-

Therefore
m = 2ra’
Average density =
_ _ mass _ m _ 27 a? 3
volume V %7[(13 2a
Therefore
Py

[Note that the mass is finite even though the density is infinite at the origin!]
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Example 6.3.3:

Find the proportion of the mass removed, when a hole of radius 1, tangent to a diameter,
is bored through a uniform sphere of radius 2.

Cross-section at right angles to the axis of the g
hole:

Use cylindrical polar coordinates, with the z-axis

aligned parallel to the axis of the cylindrical =D g
hole.

The plane polar equation of the boundary of the
hole is then f

il
2

r=2cos b

The entire circular boundary is traversed once for

|
DN
IN
N
IN
+
oY
Iy
1
I
r)

Cross-section parallel to the axis of the hole:
At each value of r , the distance from the

equatorial plane to the point where the hole
emerges from the sphere is

2 2
Z = 42" -7

The element of volume for the hole is therefore
dV = 2zdA = 24— (rdrd@)

+7/22cosf
V = J- J- 2J4—r* rdrdf
-7/2 0

We cannot separate the two integrals,
because the upper limit of the inner integral, (=2 cos 6),
is a function of the variable of integration in the outer integral.

The geometry is entirely symmetric about 6 =0
+m/22cosf

= V=4j j Ja—r’ rdrdé

0 0
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Example 6.3.3 (continued)

S (4_,,.2 3/2 2cos@
=4[ |5 do
0 %x(—2) o
4 "2 5, \3/2 3/2 472 . 2 5\ 3/2
= 3 I ((4—4cos 6’) - (4—0) )d9 = +§ I ((—4sm 9) + 4 )d9
i7r/20 72 ’

(8 — 8sin’ 0)do = % j (1 - sin’0)do
0

]

0
/2 /2

[jlde . jsinzesinedeJ
0

/2 /2

_ %[”J. 1do — I (1 - coszﬁ)sianHJ
0

Let u=cosf,then du=-sinfdb.
/=0 = wu=1 and 6:% = u=0

0

/2 u
V=2[.[1d<9—
31 %

1)

o[- ] )56 6o

lozr 64

3 9

|| =l

QL

<

Il
|w
VR
'—;i
)

(=1

QL

)

|
—_—
—

e

|

Ny

[\8]

N—

QU

<
N

1

The density is constant throughout the sphere. Therefore
Moe Ve (167[ 64) 3 1 2

3 9

42 2 3¢

msphcrc sphere

Therefore the proportion of the sphere that is removed is

N
RY/4

N | —

END OF CHAPTER 6
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