ENGI 3423
Discrete Random Quantities
Page 6-01

A random quantity [r.q.] maps an outcome to a number. 

Example 6.01: 

P  =  “A student passes ENGI 3423”

F  =  “That student fails ENGI 3423”

The sample space is   S  =  {  
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Define

X (P) = 1 ,
X (F) = 0 ,
then

X  is a random quantity.

Definition:
A Bernoulli random quantity has only two possible values: 



0 and 1.

Example 6.02

Let
Y  =  the sum of the scores on two fair six-sided dice.

Y (i, j )  =  

The possible values of  Y  are:  

Example 6.03

Let
N  =  the number of components tested when one fails. 

The possible values of  N  are:  

A set  D  is discrete if 

Examples: 

6.03.
Set   (  =  (the set of all natural numbers) is 

6.04.
A  =  { x : 1 ( x ( 2   and   x  is real } is 

A random quantity is discrete if its set of possible values is a discrete set. 

Each value of a random quantity has some probability of occurring.    The set of probabilities for all values of the random quantity defines a function  p (x ) , known as the 

[image: image1.png]Humbers




Note:
X  is a random quantity, but  x  is a particular value of that random quantity.

All probability mass functions satisfy both of these conditions: 
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and 

Example 6.05 
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     ←   [NOTE:   may omit this branch]

[ f (x) = 0  is assumed for all  x  not mentioned in the definition of  f (x).] 
f (x)  is a probability mass function.   Find the value of the constant  c .

Bar Chart:
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Example 6.06 

Find the p.m.f. for
X  =  (the number of heads when two fair coins are tossed).

Let
Hi  =  head on coin i  and  
Ti  =  tail on coin i.

The possible values of  X  are   X  =  

The Discrete Uniform Probability Distribution 

A random quantity X , whose n possible values  { x1, x2, x3, ... , xn }  are all equally likely, possesses a discrete uniform probability distribution. 
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An example is
X  =  (the score on a fair standard six-sided die), 

for which  n = 6  and  xi = i.

Line graph: 
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Cumulative Distribution Function   (c.d.f.) 
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F (x)  =  P[X ( x]  =  
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Example 6.07 

Find the cumulative distribution function for 


X  =  (the number of heads when two fair coins are tossed).

The possible values of  X  are  0, 1 and 2.
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F (0)  =  P[X ( 0]  =  p(0)  =  1/4 .

F (1)  =  P[X ( 1]  =  P[X < 1]  +   P[X = 1]  

          =  F (0)  +  p(1)  

          =

F (2)  =  P[X ( 2] 

          =  F (1)  +  p(2)  

          =

When   x < 0 , 

F (x)  =  P[X ( x]  (  P[X < 0]  =  0    (     F (x) =  0

When   x > 2 ,

F (x)  =  P[X ( x]  =  F (2)  +  P[2 < X ( x]  =  

When   1 < x < 2 ,
P[X ( x]  =  F (1)  +  P[1 < X ( x]  =

Thus 





[image: image7.wmf]ï

ï

î

ï

ï

í

ì

£

<

£

<

£

<

=

x

x

x

x

x

F

2

if

1

2

1

if

4

/

3

1

0

if

4

/

1

0

if

0

)

(


The graph of the c.d.f. is: 
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In general, the graph of a discrete c.d.f. : 

· is always non-decreasing

· is level between consecutive possible values (staircase appearance)

· has a finite discontinuity at each possible value (step height = p(x) )

· rises in steps from   F (x) = 0  to  F (x) = 1.
Example 6.08  (the inverse of the preceding problem):

Find the probability mass function  p(x)  given the cumulative distribution function 
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Steps (= possible values) are at  x = 0, 1, 2  only.
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In general, 
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If  a , b  and all possible values are integers, then 
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    and   
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Example 6.09 

Find and sketch the c.d.f. for   X  =  (the score upon rolling a fair standard die once).

The p.m.f.  is a uniform distribution




p(x)   =   

Thus   F(x)  increases from 0 to 1/6 at  x = 1   and increases by steps of  1/6  at each subsequent integer value until  x = 6.    It follows easily that 




F (x)   =   

The graph of   F (x)  has the classic staircase appearance of the cumulative distribution function of a discrete random quantity. 
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Expected value of a random quantity

Example 6.10:

The random quantity  X  is known to have the p.m.f.

	x
	10
	11
	12
	13

	p(x)
	.4
	.3
	.2
	.1


If we measure values for  X  many times, what value do we expect to see on average? 

Treat the values of   p(x)  as point masses of probability: 
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The expected value  E[X]  (= population mean  ( )  is at the fulcrum (balance point) of the beam. 

Taking moments about  x = 10:  

In general, for any random quantity  X  with a discrete probability mass function  p(x) and a set of possible values  D, the population mean  (  of  X  (and the expected value of  X ) is  
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Shortcut:   
If  X  is symmetric about  x = a, then   

Example 6.11:

Let   X  =  the number of heads when a coin has been tossed twice.   Find  E[X].

Solution:

List the all the possible combinations. 

(  the probability mass function of the distribution of  X. 
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E[X]  =  

Alternative solution: 

Graph of   p(x): 



p(x) is symmetric about x =       .

Therefore,   E[X] = 

The expected value of a function

Definition:

If the random quantity  X  has set of possible values D and  p.m.f. p(x), then the expected value of any function h(X), denoted by E[h(X)], is computed by
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E[h(X)] is computed in the same way that E[X] itself is, except that h(x) is substituted in place of x.

Special case: 
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Proof:

Example 6.12:

C = tomorrow’s temperature high in (C

F = tomorrow’s temperature high in (F

Given E[C] = 10, find E[F].

The variance of X
The quantity usually employed to measure the spread in the values of a random quantity X  is the population variance  V[X]  =  
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Definition:

Let X have probability mass function  p(x) and expected value (.  Then 
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The standard deviation of X is    
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Example 6.13:

Two different probability distributions [below] share the same mean 
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                                               (a)                                                                             (b)

If X has p.m.f. as shown in Figure (a)

	x
	3
	4
	5

	p(x)
	.3
	.4
	.3


( =

V[X] =

If  X has p.m.f as shown in Figure (b)

	x
	1
	2
	6
	8

	p(x)
	.4
	.1
	.3
	.2


( =  

V[X] = 

Example 6.14:

Let X = number of heads when a coin has been tossed twice.   Find V[X].

V[X]  =  E[(X ( () 2]

A shortcut formula for variance
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Proof:

Note:  
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 unless f(x) is linear and/or X is constant.

Example 6.14 (continued):

Let X = number of heads when a coin has been tossed twice.   Find V[X] using the shortcut formula.

The shortcut is more convenient when ( is not an integer.

Rules of variance
Example 6.15:

Do the distributions in the following two figures have the same variance or not?
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Example 6.16:

Do the distributions in the following two figures have the same variance or not?
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Proof:

The addition of the constant b does not affect the variance, because the addition of b changes the location (and therefore mean value) but not the spread of values.

[Space for any additional notes]

Probability Mass Function


(or probability function)


(p.m.f.):





p(x)  =  P[X = x]








E[X]  =  
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