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Classical hypothesis tests are close relatives of the classical confidence intervals.

Some general statements will be introduced after the first example.

Example 11.01 

The lifetime  X  of a particular brand of filaments is known to be normally distributed.   A random sample of six filaments is tested to destruction.   Those six filaments are found to last for an average of 1,007 hours with a sample standard deviation of 6.2 hours.

Is there sufficient evidence to conclude, at a level of significance of 5%, that the true mean lifetime of this brand of filaments is not 1,000 hours?

Repeat this question with a level of significance of 1%.

Test the null hypothesis  Ho : ( = 1000  

against the alternative hypothesis  Ha : ( ( 1000 .
Distribution: 

Data: 

If Ho is true, then 
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Interpretation:

If  Ho is true, then the p-value (the probability that
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 is further away from ( = 1000 than 
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) is between 5% and 1%.   The level of significance ( is an upper bound to the probability of committing a type I error:   P[reject Ho | Ho true]  (  ( .

Decision Tree:
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P[type I error]  =  P[reject Ho | ( = (o (Ho true)]  (  ( 

P[type II error]  =  P[accept Ho | ( = (1 (Ho false)]  =  ( ((1) 

1 ( (  =  power of the test.

General method for two-tailed tests:

State hypotheses:


Ho :     ( = (o     vs.    Ha :     ( ( (o      

The burden of proof is on Ha.
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Choose the level of significance   ( .

State your assumptions  

(for example, the random quantity   X   

is nearly normal).

Find    
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 (the test statistic).

If  (  is unknown, then estimate it using   s .

Case 1:   (  is unknown and  n  is small  
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and
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then reject   Ho  in favour of   Ha.   

Case 2:   n  is large (> 30)  is the same as Case 1 except that 
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  is replaced by  
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Common values:   z.025 = 1.95996 ,   z.005 = 2.57583 .
Case 3:   (  is known  is the same as Case 2 except that   s   is replaced by   ( .

Example 11.02 

A manufacturer claims that replacement machinery fills paper bags with exactly one kilogramme of sugar each, on average.   A random sample of 400 bags of sugar is weighed, producing a sample mean mass of 996.5 grammes and a sample standard deviation of  25.1 grammes.   At a level of significance of .01, is there sufficient evidence to doubt the manufacturer’s claim? 

p-value (Method 3):  
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Find    p  =  P[ | Z | > | zobs | ]   or   p  =  P[ | T | > | tobs | ]

Compare  p  to  ( .

Example 11.02 (continued, using method 3):

General Method (upper-tailed tests): 

State hypotheses:
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Ho :     ( = (o     vs.    Ha :     ( > (o     

The burden of proof is on Ha.

Choose the level of significance   ( .

State your assumptions  

(for example, the random quantity   X   

is nearly normal).

Find    
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 (the test statistic).

If  (  is unknown, then estimate it using   s .

Method 1: 


Evaluate 
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Reject  Ho iff 
[image: image16.wmf]x

> c .


Method 2:

Reject  Ho iff
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Method 3:

Evaluate  
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   and    p  =  P[ T  >  tobs] 

Reject  Ho iff  p < ( .

General Method (lower-tailed tests): 

State hypotheses:


Ho :     ( = (o     vs.    Ha :     ( < (o     


The burden of proof is on Ha.

Choose the level of significance   ( .

State your assumptions  

(for example, the random quantity   X   

is nearly normal).

Find    
[image: image19.wmf]x

 (the test statistic).

If  (  is unknown, then estimate it using   s .

Method 1: 


Evaluate 
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Reject  Ho iff 
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Method 2:

Reject  Ho iff
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Method 3:

Evaluate  
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   and    p  =  P[ T  <  tobs] 

Reject  Ho iff  p < ( .

Example 11.03 

An opinion poll of 100 randomly selected customers produces 58 customers who state a preference for brand A.   Does a majority of the population of customers prefer brand A?

From the random sample of 100 customers, how many must state a preference for brand A in order for the inference “a majority of the population of customers prefers brand A” to be valid?
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