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Example 4.01:   Roll two fair six-sided dice. 
 
Let  E1 = “sum = 7”   then 
 
 P[E1]  =   n(E1)  ×  P[each sample point]  =   n(E1)  /  n(S) 
 

  16
36

= × =
1
6

 

 
Let  E2 = “sum > 10”   then 
 

 P[E2]  = 13
36

× =
1

12
 

 

 
 
 
 
E1  and  E2  have no common sample points   (disjoint sets; mutually exclusive events)    
⇒ 
 

 P[E1 OR E2]   =   P[E1] + P[E2]   = 6 3 9
36 36 36

+ = =
1
4

 

Odds: 

  
( )
( )

1
4
3
4

1: 3 on 3:1against
1

pr
p

= = = =
−
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Example 4.01 (continued)  
 
Let  E3  =  “at least one ‘6’ ” then 
 

P[E3]   = 11
36

 

 

 
 

P[E1 OR E3] = 6 11 2 15
36 36 36 36

+ − = =
5

12
 

 
   (‡ common points counted twice) 
 
   =   P[E1] + P[E3] ! P[E1 AND E3]  
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Venn diagram       Venn diagram 
(each sample point shown):    (# sample points shown): 

          
               
 
 
 
Venn diagram for probability: 

 
 
 
 
 
 
 
Some general properties of set/event unions and intersections are listed here:  
 
Commutative:     A∪B  =  B∪A , A∩B  =  B∩A 
 
Associative:  (A∪B)∪C  =  A∪(B∪C)  =  A∪B∪C 
   (A∩B)∩C  =  A∩(B∩C)  =  A∩B∩C 
 
Distributive:  A∪(B∩C)  =  (A∪B)∩(A∪C) 
   A∩(B∪C)  =  (A∩B)∪(A∩C) 
 
In each case, these identities are true for all sets (or events)  A, B, C. 
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Example 4.01  (continued)  
Find the probability of a total of 7 without rolling any sixes. 
 
P[E1 1 ~E3 ]    =   P[E1]  !  P[E1 1 E3]     (total probability law) 
 

     

 

 
 6 2 4

36 36 36
= − = =

1
9 

 
 
[This result can also be obtained  
directly from the third Venn  
diagram on page 4-03.] 
 
 
 
 
 
 
 
 
Example 4.02:  
 

Given the information that   P[A ∨ B] = .9 ,   P[A] = .7 ,  P[B] = .6 , 
find   P[exactly one of A, B occurs] 
 
Incorrect labelling of the Venn diagram: 
 
"A" refers to the entire left circle, 
not just the left lune. 
 
Required event:    AB'  +  A'B 
 
 
 
Correct version: 
P[AB']  =  P[A∪B] − P[B] 
              =  .9 − .6  =  .3 
P[A'B]  =  P[A∪B] − P[A] 
              =  .9 − .7  =  .2 
 
P[AB' + A'B]  =  P[AB'] + P[A'B] 
  =  .3  +  .2 
  =  .5 
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Example 4.03 
 
Three cards, labelled  A , B  and  C , are in an urn.   
In how many ways can three cards be drawn  
(a)   with replacement?  
(b)   without replacement?  
(c)   without replacement  (if the order of selection doesn’t matter)? 
 
 
 
For part (a) of this question, the complete sample space is listed below. 
 
 AAA AAB AAC ABA ABB ABC ACA ACB ACC  
 
 BAA BAB BAC BBA BBB BBC BCA BCB BCC  
 
 CAA CAB CAC CBA CBB CBC  CCA CCB CCC  
 
A simple count shows 27 sample points. 
 
The first card can be A, B or C: 3 ways, for each of which 
the second card can be A, B or C: 3 ways, for each of which 
the third card can be A, B or C: 3 ways, for a total of  
   3 × 3 × 3 =  27 ways. 
 
In general, # ways to choose r objects from n with replacement is  nr . 
 
For part (b) of this question, identify the reduced sample space:  
 
 AAA AAB AAC ABA ABB ABC ACA ACB ACC  
 
 BAA BAB BAC BBA BBB BBC BCA BCB BCC  
 
 CAA CAB CAC CBA CBB CBC  CCA CCB CCC  
 
A simple count shows 6 sample points. 
 
The first card can be A, B or C: 3 ways, for each of which 
the second card can be drawn in: 2 ways, for each of which 
the third card can be drawn in: 1 way, for a total of  
   3 × 2 × 1 =  6 ways. 
These are the six PERMUTATIONS of 3 letters from the set { A, B, C }. 
(c)  
All six permutations contain A, B, C (in whatever order).    
There is only one COMBINATION. 
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Definitions – the factorial function:  
( ) ( )! 1 2 3n n n n= × − × − × × × ×" 2 1 

 
The number of ways in which r objects can be drawn from n objects without replacement 
(with the order of selection being important) is the number of permutations:  
 
nPr  =  Pr, n  =  (n)r   =   n×(n−1)×(n−2)× ... ×(n−[r −1]) 
 

( )
!

!
n

r
nP

n r
=

−
 

 
r  items can be arranged among themselves in  rPr  =  r ! ways. 
It then follows that we must define  0 ! = 1 . 
 
 
The number of ways in which r objects can be drawn from n objects without replacement 
and with the order of selection being irrelevant is the number of combinations:  
 

( )
!

! !

n
n r

r r
r

n P nC
r P r n r

⎛ ⎞
= = =⎜ ⎟ −⎝ ⎠
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Example 4.04 
 
Three cards, labelled  A , B  and  C , are in an urn.   
In how many ways can two cards be drawn 
(a)   with replacement?  
(b)   without replacement?  
(c)   without replacement  (if the order of selection doesn’t matter)? 
 
 
 
For part (a) of this question, the complete sample space is listed below. 
 
 AA AB AC BA BB BC  CA CB CC 
 
(a) 32  =  9 ways. 
 
 
 
 

(b) 
( )2,3

3! 3! 3 2 ways.
3 2 ! 1!

P = = = × =
−

6  

 
 
 

(c) 
3 3! 3 ways.
2 2 !1! 1
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

3  

 
 
 
The combinations are 
 
  AB       BC  CA 
 
The permutations are 
 
 AB AC BA BC  CA CB 
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Example 4.05 
 
 

Evaluate ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
6

11
( )

( )11
6

11 10 9 8 7 611!
6! 11 6 !

choose to
cancel larger
factorial

C
× × × × × ×

= = =
−

…

��	�
 ( )6×… 5 4 3 2 1

Note equal # factors

× × × × ×
�����	����


 

 
   =  462  
 
[In general, when evaluating combinations manually, always cancel the larger 
factorial factor of the denominator with part of the numerator.] 
 
Example 4.06 
 
 

Evaluate  P 2, 9 ( )
9

2

9 8 7!9!
9 2 !

P
× ×

= = =
− 7!

= 72  

  
 
Example 4.07 
 
 

Simplify  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− rn
n

( ) [ ]( ) ( )
! !

! !! !
n

n r
n nC

n r rn r n n r−

⎛ ⎞
= = = = ⎜ ⎟−− − − ⎝ ⎠

n
r

 

 
This symmetry should not be surprising:   if r objects are removed from n, then an 
original pile of n objects has been divided into two piles of r taken out and (n−r) left 
behind.   The number of ways of removing (n−r) objects should be the same as the 
number of ways of removing r objects. 
 
Example 4.08 
 

Simplify   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n
n

n n r n n n
r r r n n nC P P C P P= ÷ ⇒ = ÷ ≡ 1  

 
[From example 4.07, it then follows that  nC0 = 1 also.]
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Also note the identities 
 

 nP0   =   P 0, n   =   nC0   =      =      =   nCn   =   1⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n
n

 ,  

 
 nPn   =   P n, n   =   n !   =   P n−1 , n =   nPn−1 
 

and nP1   =   P 1, n   =   nC1   =       =      =    nCn−1   =   n⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−1n
n

 

 
 
Summary:   
 
The number of ways to draw  r  objects from  n  distinguishable objects is:  
 
[with replacement (ordered):]  =   nr  
 
[without replacement (ordered):] =   nPr   
 
[without replacement (unordered):] =   nCr   
 
The case “with replacement (unordered)” seldom arises in practice, but the number of 
ways of drawing  r  objects from  n  distinguishable objects in this case can be shown to 
be  n+ r − 1Cr .   See www.engr.mun.ca/~ggeorge/3423/demos/Counts.xls 
for an illustration of these values for some choices of  r and n.  
 
 
Example 4.09 
 
(a) In how many ways can a team of three men and three women be chosen from a 

group of five men and six women? 
 
(b) In how many ways can a team of three men and three women be chosen from a 

group of five men and six women when the team has one leader, one other 
member and a reserve for the men and likewise for the women? 

 

(a) Men:  5
3

5 4 10
2 1

C ×
= =

×
 

 

 Women: 6  3
6 5 4 20
3 2 1

C × ×
= =

× ×
 

 Team:  10×20  =  200  
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Example 4.09 (continued) 
 
(b) Order matters  
 (“B as leader, A as reserve” is different from “A as leader, B as reserve”). 
 
 The number of distinct ways of selecting the team is  

 ( ) ( )5 6
3 3

5! 6! 5 4 3 6 5 4
2! 3!

P P× = × = × × × × × = 7200  

 
 
For each of the 200 distinct combinations there exist 36 permutations. 
There are 200 ways to select six team members, for each of which there are 36 ways 
to allocate the six chosen team members among the team positions (leader, member 
and reserve for both men and women). 
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Another counting technique – the maze. 
 

5
3

 
 
 
Trace all paths, such as 
the path shown,  
SSFSSF , to the point   
(n, r)  =  (6, 4). 
 
All paths to (6, 4) 
pass through either  
(5, 4) or (5, 3). 
 
It therefore follows 
that  
 

6 5
4 4
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
More generally, 
 

1
1

n n n
r r rC C C+

−= +  
 
This leads to Pascal’s 
triangle [next page]. 
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Pascal’s triangle for  nCr : 

 
 
The entries in this triangle are generated from the identity  

1
1

n n n
r r rC C C+

−= +  
Each entry is the sum of the two entries immediately above (except for the initial '1' 
at the top of the triangle). 
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Example 4.10: 
On the surface of the Earth a “degree square” from latitude θ degrees to latitude (θ + 1) 
degrees is, to a good approximation, a rectangle of sides 111.12 km (north-south) and 
111.12×cos(θ +½) km (east-west). 
 
Suppose that a ship of beam (width) b  is crossing the degree square on a path of total 
length d.   Suppose also that a stationary iceberg of width w is placed randomly on the 
degree square and that the ship’s crew fails to detect the iceberg. 
 
(a) Find the probability that the ship will collide with the iceberg during its crossing 

of the degree square. 
[Hint:  look at the ratio of the area swept out along the ship’s path by an object of 

width (w + b) to the total area of the degree square.] 
 
(b) Evaluate the probability in part (a) in the case when   θ = 41 degrees, b = 28 m,  
 w = 110 m  and  d = 83.2 km, 
     (which are plausible values for the RMS Titanic in 1912). 
 
(c) For the values given in part (b), find the probability, (correct to the nearest 1%) 

that there are no collisions after 100 crossings. 
 
(d) For the values given in part (b), find the least number of crossings at which the 

probability of at least one collision rises above 50%. 
 
 
 

111.12 cos(θ+½) km  
 

111.12 km 

d 

 
(a) P[collision] =  
 

 ( )area swept out by
area of degree 'square'

b w+
 

 

 
( )

( )2 1
2111120 cos

b w d
θ

+ ×
=

+ °
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Example 4.10 (continued)  
 

(b) [ ] ( )
( ) ( )2 1

2

28 110 83 200
P collision 0.001 2415 to 3 s.f.

111120 cos 41
+ ×

= = =
°

0.001 24…  

 
 
 
 
(c) Let  p = P[collision in 1 crossing] , then  
 
 P[no collision in 100 crossings]  =  (1 – p)100   
 =  (.998 758...)100   =   .883 175... 
 
 =  88%  (to the nearest 1%). 
 
 
(d) P[at least 1 collision in n crossings]  
 1  –  P[no collisions in n crossings] 
 = 1 – (1 – p)n   
 
 We want the least  n  such that  
 1 – (1 – p)n  >  1/2 
 
 ⇒ (1 – p)n  <  1 – 1/2  =  1/2 
 ⇒ n ln(1 – p)  <  ln(1/2) 
 [Note that the inequality reverses upon division by the negative quantity  
 ln(1 – p) :] 

 ( )
( )

1
2ln 0.693147 557.9

ln 1 0.001 242
n

p
−

⇒ > = =
− −

… …
…

 

 Therefore   nmin  =  558 . 
 
 [Note that this example is for only one iceberg in a single degree square.] 
 
 
 
 
 
 
 
 
 

[End of Section 4] 
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