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Joint Probability Distributions (discrete case only)

The joint probability mass function of two discrete random quantities X, Y is
p(x,y) = P[X=x AND Y=y]

The marginal probability mass functions are

P(X) = D p%Yy)| = P[X=x]

(YY) = D p(XY)
Yy X

Example 9.01

Find the marginal p.m.f.s for the following joint p.m.f.

p(X, Y) y=3 y=4 y=3>5 Px(X)
X=0 30 .10 20 .60
x=1 20 .05 15 40
Py(y) .50 15 .35 1

[Check that both marginal p.m.f.s, (row and column totals), each add up to 1.]
The random quantities X and Y are independent if and only if

v (X Y)

In example 9.01, px(0)epy(4) = .60x.15 = .09, but p(0,4) = .10 .

Therefore X and Y are dependent,
[despite p(X,3) = px(X)epy(3) for x=0and x=11].

pPX, y) = px(X) e py(y)

For any two possible events A and B, conditional probability is defined by

P[A|B] = % , which leads to the conditional probability mass functions
P(X,Y) P(X,Y)
(y[x) = and Py (X[y) = :
PYIX e (X XY b (Y)
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In example 9.01, “pyx(5/0)” means “P[Y=5|X=0]".
“p(0,5)” means “P[X=0and Y=15]"
p(0, 5) 20 1
510) = ————= = — = —  “px(0)” means “P|X=0]”
pY\X( 10) 0.(0) 60 3 Px(0) [ ]
Compare with P[Y=5]=.35:
events “X =07, “Y =5 are not quite independent!

Py y=3 y=4 y=5 px()
x=0 30 .10 20 .60
x=1 .20 .05 15 40
Py(y) 50 15 35 1
Expected Value

E[h(X,Y)] = Zx: Zy:h(XQYVP(XaY)

A measure of dependence is the covariance of X and Y :

Cov[X,Y] = E[(X -E[X]\Y -E[Y])] = ; Zy:(x_ﬂx)(y—ﬂv)p(X,Y)
= E[XY] - E[X]eE[Y]

Note that V[ X] = Cov[ X, X].

In Example 9.01:
p(X, y) y=3 y=4 y=>5 Px(X)
Xx=0 .30 .10 .20 .60
Xx=1 .20 .05 15 40
Py(y) .50 15 35 1
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1
E[X] = D x-py (X) = 0x.60 + 1x.40 = 0.40
x=0

E[Y]

Zi;,y' pv(y)

3x.50 + 4x.15 + 5x.35 = 3.85

1

E[XY] = X2 xy-p(xy)

x=0 y=3

X XY 3 4 5
0x3x.30 0x4x.10 0x5x.20
1 1 x3x.20 1 x4 x.05 1 x5x%x.15

=0+0+0+ .60 +.20 +.75
1.55

Cov[ X, Y]

E[XY] - E[X]eE[Y]

1.55 — 0.40x3.85

= 0.01

Note that the covariance depends on the units of measurement. If X is re-scaled by a
factor ¢ and Y by a factor k, then

Cov[cX,kY] = E[cXkY] —E[cXJeE[KY] = ckE[XY] — cE[X]ekKE[Y]
= ck(E[XY] — E[X]eE[Y]) = ckeCov[X,Y]
A special caseis V[ cX] = Cov[cX,cX] = c’ e V[ X ].
This dependence on the units of measurement of the random quantities can be eliminated

by dividing the covariance by the geometric mean of the variances of the two random
quantities:
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The correlation coefficient of X and Y is Corr( X,Y) = pxy =

Cov[X,Y] _ Cov[X,Y]

) JVIX]e VY] Oy ® 0,

P

In Example 9.01,
1

E[x2] = > %% pe(x) = 07x.60 + 1x.40 = 0.40
x=0

VIX] = E[X] — (E[X])* = 0.40 — (0.40)* = 0.24

5
E[Y?]= yz_;yz-pY(y) = ... = 15.65

V[Y] = 15.65 — (3.85)" = 0.8275

= p = 0.01 ~ 0.0224 [See the Excel file

\0.24%x0.8275

"www .engr.mun.ca/~ggeorge/3423/demos/jointpmf._x1s"].

For a joint uniform probability distribution: » possible points, p(x,y)=1/n for each.

(and noting p oc ZZ(X—yX)(y—,uy)):
Xy

SRS R G S
’\x ‘x ‘x x ‘ x

X = i X = i, X = X = X =

¥ ¥ ¥ ¥

,.'::}:_1 —lﬁill{;?‘:iﬂ IIGHD D{..Gd:]- ll,:‘_‘}:

[When p =+1 exactly, then Y = aX + b exactly, with sign(a) = p.]
In general, for constants a, b, c,d, with a and c both positive or both negative,

Corr(aX+b, cY+d) = Corr( X, Y)

Also: -1 < p < +1.
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Rule of thumb:
lp| > .8 = strong correlation
S<|p|<.8 = moderate correlation
lp| £.5 = weak correlation
In the example above, p =0.0224 = very weak correlation (almost uncorrelated).

X,Y areindependent = p(X,y) = px(x) pr(y)

= EB[XY] = 2> xypX) p(y) = 2 xp(X)2yply) = E[X]E[Y]
= Cov[X,Y] = E|XY] —-E|[X] E[Y] = 0. Itthen follows that
X,Y areindependent = X,Y areuncorrelated (p =0), but

X,Y areuncorrelated = X,Y are independent .

Counterexample (9.02):

Let the points shown be equally likely. Then the value of Y is completely determined
by the value of X . The two random quantities are thus highly dependent. Yet they are
uncorrelated!

2 Y

Y=X (dependent)

EIX] =0 (by symmetry) ] v :. 2

E[XY] = E[X’] = 0 (sym.)

Cov(X, Y) = E[XY] — E[X] E[Y]

=0 — OxE[Y] = 0

Therefore p=0! . . y

X

[The line of best fit through these points is horizontal.|
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Linear Combinations of Random Quantities

Let the random quantity Y be a linear combination of n random quantities X; :

Y = z i X [Note: lower case @; is constant; upper case X; is random]|

then E[Y] = E{iaixi} = iaiE[Xi] (linear function)

i=1
n
= Zai:ui
i=1

n n
But  V[Y] = > > aa;Cov[X;, X]
i=1 j=1

{Xi} independent =  V[Y] = Zn:aiz V[Xi]

Special case: n=2, aj=1, a==+1:
E[ X] + X2 ] = M + M2 and
VIXi£X] = 1%6 + (#1)%6% = 6> + 6,

["The variance of a difference is the sum of the variances"|

Example 9.03

Two runners’ times in a race are independent random quantities T; and T, , with

11 =40 ol =4,

Ly =42 ol =4,
Find E[ T1 — Tz ] and V[ T1 — Tz ]
E[h-T:] = m1 —p2 = =2

VITi-T:] = 6> +06,°=4+4=28
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Example 9.04

Pistons used in a certain type of engine have diameters that are known to follow a normal
distribution with population mean 22.40 cm and population standard deviation 0.03 cm.
Cylinders for this type of engine have diameters that are also distributed normally, with
mean 22.50 cm and standard deviation 0.04 cm.

What is the probability that a randomly chosen piston will fit inside a randomly chosen
cylinder?

Let Xp = piston diameter ~ N(22.40, (0.03)%)
and  Xc¢ = cylinder diameter ~ N(22.50, (0.04)2)

The random selection of piston and cylinder = Xp and Xc¢ are independent.
The chosen piston fits inside the chosen cylinder iff Xp < Xc.

= Xp—Xc<0

E[Xp — Xc] = 22.40 — 22.50 = —0.10

Independence = V[Xp — Xc] = V[Xp] + V[X¢]
= 0.0009 + 0.0016 = 0.0025

=  Xp— Xc ~ N(-0.10, (0.05)%)

P[X, - X, < 0] = P{Z < W}

= ®(2.00)

= 9772 (to4s.f.)
[It is very likely that a randomly chosen piston will fit inside a randomly chosen
cylinder.]

[Follow-up exercise: with all other parameters unchanged, how small must the
mean piston diameter be, so that P[fit] increases to 99%?

Answer:
Hp = Huc — z_mx\/(V[Xp—XC]) ~ 22.50 — 2.326x0.05 = 22.38 cm (2 d.p.) ]
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Distribution of the Sample Mean

If a random sample of size n is taken and the observed values are {Xj, Xz, X3, ..., Xp}.

then the X; are independent and identically distributed (iid) (each with population
mean  and population variance o) and two more random quantities can be defined:

Sample total:

T =2X

Sample mean:
T

_ |
X = — = -¥'x,
n nzi:'

E[X] = %ZE[Xi] = %Zl = %-n = u = E[X]

Therefore E[Y] = u

Also V[X] = VFZXJ = #V{in}

= %ZV[Xi] ( {X,}are independent)
1 2 2
Ly -Z 2
2
- o
Therefore V[X] =

= as N—>ow, X > u.
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Sampling Distributions

2
If X ~N(u o) then X ~ N(,u, J—J
n
X —u o) .
and Z= —-< ~N(0,1). —— | 1is the standard error.
& "
Jn
If o? is unknown, then estimate it using E[S?] = o?. Upon substitution into the

expression for the standard normal random quantity Z , the additional uncertainty in o
changes the probability distribution of the random quantity from Z to
X - u o
T = 3 ~tnh_o1, (a t-distribution with v = (n—1) degrees of freedom)
(&
But t,_; > N(,1) as n—>ow.
[We shall employ the t distribution in Chapter 10].

Example 9.05

How likely is it that the mean of a random sample of 25 items, drawn from a normal
population (with population mean and variance both equal to 100), will be less than 95?

$-2.5]

-2.5 0
P[X <95] ~ .0062
If X <95 occurs, then we may infer that “X ~ N(100, 10%)” is false.

[However, in saying this, there remains a 0.62% chance that this inference is
incorrect.]
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Example 9.06

The mass of a sack of flour is normally distributed with a population mean of 1000 g and
a population standard deviation of 35 g. Find the probability that the mean of a random
sample of 25 sacks of flour will differ from the population mean by more than 10 g.

We require PH)?—,U‘ > IOJ .
X ~ N(1000, (35)%) and  sample size n =25

_ 2
= X ~N 1000,3i
25

= standard error = 3?5 =17
PUY—y‘ > 10}
= 2xP[ X—p < -10] (- sym) T-p<-10 g F-p=+lDX
= ZXP‘:Z < —&}

7

= 2 P(-1.429)

= 153 (to 3 d.p.)

Compare this with the probability of a single observation being at least that far
away from the population mean:

Pl[X—p| >10]=... = 2xq>[—£J = 772 (to 3d.p.)

[The random quantity X is distributed much more tightly around x# than is any
one individual observation X.]

X-p=<-10 z H-p=+l0X
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Central Limit Theorem

If X is not normally distributed, but E[Xi] = u, V[X] = o® and nis large
(approximately 30 or more), then, to a good approximation,

2
% - N(ﬂ,ff_j
n

At "http://www.engr.mun.ca/~ggeorge/3423/demos/clt._exe" is a
QQBasic demonstration program to illustrate how the sample mean approaches a normal
distribution even for highly non-normal distributions of X . [A list of other
demonstration programs is at
"http://www.engr.mun.ca/~ggeorge/3423/demos/".]

Consider the exponential distribution, whose p.d.f. (probability density function) is
F(x4) = 262, (x20,150) = E[X]:%, V[x]:%
It can be shown that the exact p.d.f. of the sample mean for sample size n is
an (/?Lnx)'n_1 e AN
(n—1)!
= E[X]=1, V[X]-—
2 ni’

[A non-examinable derivation of this p.d.f. is available at
"http://www.engr.mun.ca/~ggeorge/3423/demos/cltexp2.doc".]

fe (X 4,n) = , (x=0,2>0,neN)

For illustration, setting A = 1, the p.d.f. for the sample mean for sample sizes n =1, 2, 4
and 8 are:

n=1: f(x)=¢e* n=2:  f (x) = 4xe™
3 _—4x 7 8%
4(4x) e 8(8x) e
n=d: fx(x):% nos: f(x) = SBX) e )7!
Jix) n=8
n=1 e
1
n==z
0| 1 2 3 P

The population mean g =E[X]=1 for all sample sizes.
The variance and the positive skew both diminish with increasing sample size.
The mode and the median approach the mean from the left.
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For a sample size of n = 16, the sample mean X has the p.d.f.
16(16x)"” 716X
fx (x) =

and parameters yzE[)z]:l and asz[)?]:%.

15!
f(x)
F::
2..
_ 1
m_li %N(LE)
1..
0 1 2 3 ¢

A plot of the exact p.d.f is drawn here, together with the normal distribution that has the
same mean and variance. The approach to normality is clear. Beyond n =40 or so, the
difference between the exact p.d.f. and the Normal approximation is negligible.

It is generally the case that, whatever the probability distribution of a random quantity
may be, the probability distribution of the sample mean X approaches normality as the
sample size n increases. For most probability distributions of practical interest, the
normal approximation becomes very good beyond a sample size of n = 30.

Example 9.07

A random sample of 100 items is drawn from an exponential distribution with parameter
A=0.04. Find the probabilities that

(a) a single item has a value of more than 30;

(b) the sample mean has a value of more than 30.

(a)
P[X >30] — e—lx — e—.04><30
= e 12 = 301194..
(b)
M =0 = 1 = L =25
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o 25
= — = —— =25
Jn o 100

n>>30, so CLT = X ~ N(25, (2.5)%) to a good approximation.

,_ X-u _30-25 _
FRE
P[X >30] = P[Z>2] = ®(-2.00)
~ 0228
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Sample Proportions

A Bernoulli random quantity has two possible outcomes:
X =0 (= “failure”) with probability g = 1 —p
and X=1 (= “success”) with probability p .

Suppose that all elements of the set {X;, Xy, X3, ... , X4} are independent Bernoulli
random quantities, (so that the set forms a random sample).
Let T =X+ X+ X3+ ...+ Xy = number of successes in the random sample

A

T . .
and P = — = proportion of successes in the random sample,
n

then T is binomial (parameters: n,p)

=  E[T] = np

VIT| = npq
= E[Ig} = E[%T} = % =p
V[ﬂ - V{%T} - ”:f - %

For sufficiently large n, CLT =
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Example 9.08

55% of all customers prefer brand A.

Find the probability that a majority in a random sample of 100 customers does not prefer
brand A.

p = .55 n = 100

. 5. N (55 55><45j

100

50-.55
= P P< 50 P{Z <'—}
[ F;] } /002475

=~ ®(-1.01) = .156

~1.01 0 z
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Unbiased estimator A for Biased estimator B for
some unknown parameter &: the unknown parameter &:
Jid) J(B)

a 4 8 E[B] g
chiaz+

E[A] = 0 E[B] = 6

Which estimator should we choose to estimate &?

A is unbiased

BUT
JA)

B is more efficient

(accurate)

If P["Bis closer than A4 to #"] is high, then choose B,
else choose A4 .

A minimum variance unbiased estimator is ideal.
[See also Problem Set 6 Question 2]
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Accuracy and Precision (Example 9.09)

An archer fires several arrows at the same target. [The fable of William Tell, forced to
use a cross-bow to shoot an apple
off his son’s head]

Precise

@ but [William is precise, but

his son dies every time!]
o biased

Unbiased
[William hits his son occasionally,
but often misses both son and apple, but,
on average, is centred on the apple!]
not precise

Unbiased
and
precise [William hits the apple most of the time,
to the relief of his son!]
= accurate
Error = Systematic error + Random error
(inaccuracy)’ = (bias) +  V[estimator]

Estimator A for @ is consistent iff
E[A] > 6 and V[A] = 0
(as N —> o)

A particular value a of an estimator A is an estimate.
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Sample Mean

A random sample of n values { Xj, Xz, X3, ..., X; } is drawn from a population of mean
4 and standard deviation o.

Then E[Xi] = x#, V[X] = o? andthesample mean X = lZ:Xi.

X estimates .
2

ok VK- 2

But, if 4 is unknown, then o is unknown (usually).
Sample Variance

(X, =XV +(X, = XJ +..+(x, - X)
n-1

nzxiz _( Xi)2

n(n—1)

s? =

and the sample standard deviationis S = /S’
n—1 = number of degrees of freedom for S .
Justification for the divisor (n — 1)  [not examinable]:

Using V[Y] = E[Y?] - (E[Y])? for all random quantities Y,
E[Y?] = VIY] + (E[YD® = oy’ + uy’

pasdn il

setY=X; SetY =3 X;

o))

Do +1)} - %{n02+(n,u)2} (- iid)
nO'2 +p;u/{ — Jz —p/ =
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Therefore

E '— =0’ = E[Sz] = o’

but

E lZ(xi—x)z} - (”—_ljaz <o’ - biased!

2 . .. . . . 2
S is the minimum variance unbiased estimator of o~ and

X is the minimum variance unbiased estimator of .
Both estimators are also consistent.

Inference — Some Initial Considerations

Is a null hypothesis 7, true (our “default belief”), or do we have sufficient evidence to

reject /(, in favour of the alternative hypothesis /(4 ?

o could be “defendant is not guilty” or “u = u,” , etc.
The corresponding /(s could be “defendant is guilty” or “u # u,” , etc.
The burden of proof is on /(5.

¥, Tos

Eeject .?‘fn
H False  Correct decision

Sufficient
evidence for ,?fﬁ

Cihtatn
evidence

Inzufficient

evidence
A True  Correct decision

A False |TypeIlerror

Do not reject .?fn

Bayesian analysis: u is treated as a random quantity. Data are used to modify prior
belief about 1. Conclusions are drawn using both old and new information.

Classical analysis: Data are used to draw conclusions about x, without using any prior
information.
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