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Simple Linear Regression

Sometimes an experiment is set up where the experimenter has control over the values of
one or more variables X and measures the resulting values of another variable Y ,

producing a field of observations.
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The question then arises: What is the best line
(or curve) to draw through this field of points?

Values of X are controlled by the experimenter,
so the non-random variable X is called the
controlled variable or the independent
variable or the regressor.

Values of Y are random, but are influenced by
the value of Xx. Thus Y is called the
dependent variable or the response variable.

We want a “line of best fit” so that, given a value of X, we can predict the value of Y

for that value of X.

The simple linear regression model is that the
predicted value of y is

y =B, + B X
and that the observed value of Y is
Y, = B+BX+s

where g 1is the error.

It is assumed that the errors are normally distributed as  &; ~ N(0, 6°) , with a constant
variance 6. The point estimates of the errors &; are the residuals ¢ = vy, -, .

With the assumptions

2)

1) Yo = B+ B X +¢

X=X = Y ~N(f+fX,0>) [= () V[Y] is ind’tof x]

in place, it then follows that ,[3’0 and ,Bl are unbiased estimators of the coefficients /)
and f.

E[IBO +:81X} = B, + BX

(note lower case X)

Methods for dealing with non-linear regression are available in the course text, but are
beyond the scope of this course.
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Examples illustrating violations of the assumptions in the simple linear regression model:
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If the assumptions are true, then the probability distribution of Y |x is N( & + Bix, o).
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Example 12.01

Giventhat Y; = 10 — 0.5 + &i, where ¢;~N(0,2), find the probability that the
observed value of y at x=28 will exceed the observed value of y at x= 7.

Yi ~N(10-0.5%,2)
Let Y; = the observed value of y at x=7

and Yg = the observed value of y at X=38§,
then

l

Y; ~ N(6.5, 2) and Yz ~ N(6,2)
=  Yg-Y; ~N6-6.5,2+2)
u=-10.5 c=V4 =2

0—(-0.5)

P[Y,-Y, > 0] = P[Z > 5

} =1 - ®(0.25) ~ .4013

Despite 1 <0, P[Ys > Y] >40% !

For any X; in the range of the regression model, more than 95% of all Y; will lie
within 26 (=2 2) either side of the regression line.
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Derivation of the coefficients ,BO and ﬁl of the regression line y = ,5’0 + ,5’1 X

We need to minimize the errors.

Each error is estimated by the i e 3 B aén 4 ,3135
observed residual ¢ = y, — V. . & { .
Vo o
Minimize errors.
dle| 2 NO
Use the SSE (sum of squares due to errors)
X;‘
n n
s = Ye' = Yhi-A-sx] = t5.4)
i=1 i=1
Find ,30 and ,31 such that 6? = ﬁ = 0.
P, op,
[Note: ,BO, ﬁl are variables, while x,y are constants.]

52 zzi(yi_ﬁo_ﬁ1xi)(o_l_o)zo = ﬁ021+ﬁlzxzzy M

and
aa; =2 (Y-B-Bx)(0-0-x) =0 = ATx+ AYX =Txy @

or, equivalently, {

5o sela) - 150

e BB AR T
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The solution to the linear system of two normal equations (1) and (2) is:
from the lower row of matrix equation (4):

A

S
B = % (where |nS,, nNY. Xy — D x)y
and nS,, = ndx - (Zx)2 )

sample covariance of (X, y)

or, equivalently, £, = -
sample variance of X

and, from equation (1): ,5’0 = %(Zy - ﬁ]ZX) .

A form that is less susceptible to round-off errors (but less convenient for manual

computations) is
n

R Z(Xi - i)(}’i - 37) . .
ﬂl = = n and ﬂo = y- :Bl X.
(Xi - Y)z

The regression lineof Y on X is |y—-Yy = ,Bl (X - Y) .

Equation (1) guarantees that all simple linear regression lines pass through the centroid
(X, ¥) of the data.

It turns out that the simple linear regression method remains valid even if the values of
the regressor X are also random.

However, note that interchanging X with y, (so that Y is the regressor and X is the
response), results in a different regression line (unless X and Y are perfectly correlated).
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Example 12.02
(the same data set as Example 11.06: paired two sample t test)

Nine volunteers are tested before and after a training programme. Find the line of best
fit for the posterior (after training) scores as a function of the prior (before training)

scores.

Volunteer: 1 2 3 4 5 6 7 8 9
After training: 75 66 69 45 54 85 58 91 62
Before training: 72 65 64 39 51 85 52 92 58

Let Y =score after training and X = score before training.

In order to use the simple linear regression model, the assumptions

Yo = B+BX+e&
X=Xy = Y~N(ﬂ0+,31X0,02)

must hold.

From a plot of the data

(in http://www._engr.mun.ca/~ggeorge/3423/demos/regress2.xls),
and http://www.engr.mun.ca/~ggeorge/3423/demos/ex1202._.mpj),
one can see that the assumptions are reasonable.

Sinple Linear Regression (Exanple 1)
ENGI 3423 Example 12.02
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Calculations:
i Xj Yi xi’ Xi. )i »
1 72 75 5184 5400 5625
2 65 66 4225 4290 4356
3 64 69 4096 4416 4761
4 39 45 1521 1755 2025
5 51 54 2601 2754 2916
6 85 85 7225 7225 7225
7 52 58 2704 3016 3364
8 92 91 8464 8372 8281
9 58 62 3364 3596 3844
Sum: 578 605 39384 40824 42397
NS, = NY.Xy — Dx>y = 9x40824 — 578 x605 = 17726
[Note: nS,, = n(n—1) * sample covariance of (X, Y) |
S, = n>x - (Oxf = 939384 — 578° — 20372
[Note: n Sy, = n(n—1) * sample variance of X |
~ S, 1772
= b = LA 17726 = 0.870116
Sy 20372 —_—
and f3, = 1 (Zy - ﬁle) = 5(605 ~0.807116x578) = 11.34145
n _

Each predicted value Y, of Y is then estimated using ¥, = ,30 + ,5’1 X, =~ 11.34 + 0.87 x

and the point estimates of the unknown errors

A measure of the degree to which the
regression line fails to explain the
variation in Y is the sum of squares due
to error,

n n o
SSE = Zeiz = Z(Yi - By =B Xi)Z

i=1 i=1

which is given in the adjoining table.

Xi
72
65
64
39
51
85
52
92
58

&
e = Y,—Y . [Useun-rounded values 11.34... and 0.87... to find residuals.]

Yi
75
66
69
45
54
85
58
91
62

are the observed residuals

Y,
73.98979
67.89898
67.02886
45.27597
55.71736
85.30130
56.58747
91.39211
61.80817

€
1.0102
—1.8990
1.9711
-0.2760
-1.7174
-0.3013
1.4125
-0.3921
0.1918
SSE =

ei2

1.0205
3.6061
3.8854
0.0762
2.9493
0.0908
1.9952
0.1537
0.0368

13.8141
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An Alternative Formula for SSE:

Bo =Yy - ﬁly =
SSE :-i(yi _(7_[31 Y)_Bl Xi)z :-i((yi - 7)_ﬁ1(xi _7))2
|n:1 ) 1=1 )
= 30 - 98 ~28 065Ny, - 9)+ A 3 - %)
:lszyyl . 2’31 ;. +|;1213XX =1

.S,
But g, = 3

XX

P Sxxs  Vx
= SSE =S, - §S, or SSE = 2w or

In this example,

2
SSE - 20372 x15548 17726 _ 13814,
9x20372

However, this formula is very sensitive to round-off errors:
If all terms are rounded off prematurely to three significant figures, then

20400 % 15500 —17 700>

SSE = 5220200 = 1585 (2 dp.)
Y S ¢ o _——9¢
2 (J’—F)ﬂ["
e
v/”:}
t’_’i”_ M
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The total variation in Y is the SST (sum of squares - total):

SST = W Z:(yi —¥)’| (which is (n — 1) x the sample variance of ).

In this example, SST = 15548/9 = 1727.555...

The total variation (SST) can be partitioned into the variation that can be explained by the

regression line (SSR = Z(y, - 7)2) and the variation that remains unexplained by the

regression line (SSE). SST SSR SSE
— +

T T
Syy lél Sxy

The proportion of the variation in Y that is explained by the regression line is known as
the coefficient of determination

o SSR | _ SSE

SST SST

In this example, rr =1 — (13.81.../1727.555...) = .992004...
Therefore the regression model in this example explains 99.2% of the total variation in Y.

Note:
2

. S,
SSR = S, = -

and  SST = Sy
=

The coefficient of determination is just the square of the sample correlation coefficient r.
Thus r = v r* ~ .996. Itis no surprise that the two sets of test scores in this example
are very strongly correlated. Most of the points on the graph are very close to the
regression line y = 0.87x + 11.34.
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A point estimate of the unknown population variance o of the errors & is the sample
variance or mean square error s° = MSE = SSE / (number of degrees of freedom).

But the calculation of s* includes two parameters that are estimated from the data: ﬁo

A SSE
and S, . Therefore two degrees of freedom are lost and |[MSE = ——|. |In this

n-2

example, MSE ~ 1.973.

A concise method of displaying some of this information is the ANOVA table (used in
Chapters 10 and 11 of Devore for analysis of variance). The f value in the top right
corner of the table is the square of a t value that can be used in an hypothesis test on the
value of the slope coefficient S .

Sequence of manual calculations:
{ ’fs ZAxa ZJ’a sza nys Zyz } - { nSxx,nSxyanSyy} -
{ 5., P, SSR, SST} — { R*, SSE} — { MSR, MSE } — f — t

Source Degrees of ~ Sums of Squares Mean Squares f
Freedom
Regression 1 SSR =1713.741... MSR =SSR /1 = MSR/MSE
=1713.741... =868.4...
Error n-2 SSE= 13.81... MSE = SSE / (n-2)
=7 = 1.973...
Total n—1 SST = 1727.555...
=8

To test /(o : B =0 (no useful linear association) against /(, : S # 0 (a useful linear

association exists), we compare |t|= Vf to tw2, (n-2) -
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In this example, |t | = \868.4... = 29.4... >> tooos, 7 (the p-value is < 1077)
so we reject /(, in favour of /(, at any reasonable level of significance o.

The standard error s, of ,5’1 is s/ Sxx so the t value is also equal to

161_0

n MSE
nsS,,

Yet another alternative test of the significance of the linear association is an hypothesis
test on the population correlation coefficient p, (#o: p=0 vs. 4 p # 0), using the

riJn-2

test statistic |t = \/—2 , which is entirely equivalent to the other two t statistics
1-r

above.

Example 12.03

(a) Find the line of best fit to the data

(b) Estimate the value of y when x=2.

(c) Why can’t the regression line be used to estimate y when X = 10?
(d) Find the sample correlation coefficient.

(e) Does a useful linear relationship between Y and X exist?

(a) A plot of these data follows.
Exanple 3
¥ The Excel spreadsheet file for these data
7 ~ can be found at
; | | “http://www.engr.mun.ca
5 : | /~ggeorge/3423/demos
4 e | /regress3.xIs”.
3 i |
- |
2 + + ;
1 |
0 : : : : !

[}
—_
b2
L
=
[}
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The summary statistics are

XX =16 Xy = 38 n=10
X = 40 Yxy = 45.6 >y = 163.06
From which

NSy = NZXy — XXy = —152

NSx = NZX* — (Tx)* = 144 NSy = nZy’ — (Ty)* = 186.6
Example 3
S ¥

O R - ' |
s, 144 6 |
= |
and f, = M = 5.48 ; o |
n 7 * \:\_ - |
1 B |
So the regression line is 0 : F=-L05o6x + S'A}EEEH"‘. |
1] 1 2 3 4 5 ]

y = 5480 — 1.056x (3 d.p. x

(b) x=2 = y=5488.. — 1.055..x2 = 3.38 (2d.p.)

() x=10= y = 5488.. — 1.055..x10 = =5.07 <0! (2d.p.)

Problem: x =10 is outside the sample range for x.
= SLR model may be invalid. In one word: EXTRAPOLATION.

—152

S
) Y e SA—
JSx S,y J144%186.6

= —92727... ~ =93

(e) SSR = (nsxy)z = (-152)° = 16.04
n(nS,) 10x144

SST = Sy, = (186.6/10) = 18.66

and SSE = SST —SSR = 18.66 — 16.04... = 2.615...
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The ANOVA table is then:

Source d.f. SS MS f
R 1 16.04444... 16.04444... 49.07...
E 8 2.61555... 0.3269...
T 9 18.66000

from which t = —\Vf ~ -7.005 (3d.p.) But toss = 5.041... ||> toos,s

Therefore reject /, : =0 in favour of /(, : B # 0 at any reasonable level of

significance o. [p-value = .00011...]
or f - M2 _ —.92727..x/8 7005
N J1-.85983...
= reject /(o: p=0 in favour of /(,: p# 0 (a significant linear association exists).
SSR 16.04...

[Also, from the ANOVA table, r* = ~ .8598

SST  18.66

Therefore the regression line explains ~86% of the variation in y.
r=-\r*=-927 , as before.]

Confidence and Prediction Intervals

The simple linear regression model Y, = /S, + B X + & leads to a line of best fit in

the least squares sense, which provides an expected value of Y given a value for X :

y = B+ Bx =E[Y[|X] = tvex.
The uncertainty in this expected value has two components:
= the square of the standard error of the scatter of the observed points about the
regression line (= o”/n), and
= the uncertainty in the position of the regression line itself, which increases with the
distance of the chosen X from the centroid of the data but decreases with increasing

=l

XX

spread of the full set of X values: &~ (

The unknown variance o of individual points about the true regression line is estimated
by the mean square error s° = MSE .
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Thus a 100(1-0)% confidence interval for the expected value of Y at X =X, has
endpoints at

R A 1
(ﬂo"‘ﬂlxo) * ta/z,(n—Z)S —+

n Sy
The prediction error for a single point is the residual E = Y — §, which can be
treated as the difference of two independent random variables. The variance of the

prediction error is then

Thus a 100(1-a)% prediction interval for a single future observation of Y at X =X,
has endpoints at

V)
(ﬁo"‘:&lxo) * ta/Z,(n—Z) S\/l"'l"'(xos;x)

n XX

The prediction interval is always wider than the confidence interval.

Example 12.03 (continued)

® Find the 95% confidence interval for the expected value of Y at Xx=2and X =>5.
(2) Find the 95% prediction interval for a future value of Y at x =2 and at x=5.

3} a=5% = a/2=.025
Using the various values from parts (a) and (e):

n=10 to2s, 8 =2.306... s=0.57179... X=1.6

A

Sw=144 B, = 5.4888.. B, =—1.0555...

Xo =2 => the 95% CI for uyp 1s

~ ~ 1
(ﬂo + 5 Xo) * ta/Z,(n—Z) S
XX

—\

L =X s 4 13185, XV 0L
n

— 33777..+ 04395.. = 2.94 < E[Y|2]< 3.82 (to3sf)
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Xo =5 => the 95% CI for pys is

n n 1
(ﬂo + IBI Xo) T ta/2,(n—2) S
XX

(%, —X)

S+ %X C 0110 + 13185, x ¥ 0.902777...
n

= 02111...+ 12528.. = —1.04 < E[Y|5]< 1.46 (to3sf)

(2) Xo=2 = the 95% Pl for Y is

—\2
(B + 2%) £t s s\/1+l+u ~ 3.3777... £ 1.3185... x\ L1111...
’ n

= 33777...£ 1.3898... = 199 <Y <477 (to3s.f) at x=2

XX

Xo=5 =>the 95% PI for Y is

n
= 0.2111... £ 1.8188... = =1.61 <Y < 2.03 (to3s.f)at x=5

XX

5 . A L, (=)
(,HO+,[)’1XO) Gy Sy 1+ 0= 02111 % 1.3185... x \ 1.902777...

Note how the confidence and prediction intervals both become wider the further away
from the centroid the value of X, is. The two intervals at X =5 are wide enough to cross
the X-axis, which is an illustration of the dangers of extrapolation beyond the range of x
for which data exist.

Sketch of confidence and prediction intervals for Example 3 (f) and (g):
® 95% Confidence Intervals (2) 95% Prediction Intervals
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