
 

ENGI 3425 Mathematics for Civil Engineering I 

Problem Set 5 Questions 
(Sections 6.07 – 6.10 – Power Series, Binomial Series & Fourier Series) 

 

 

1. Find the radius  R  and interval  I  of convergence for the power series 
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2. Find the radius  R  and interval  I  of convergence for the power series 
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3. Integrate the geometric series  
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  and its sum with respect to  x  in order to find the 

Maclaurin series for   f (x)  =  ln (1 – x)   and its radius of convergence.  

 

 

4. Find the binomial expansion of  

  3 31f x x   

 

as far as the term in  x
11

  and find its radius of convergence  R. 

 

 

5. Find the binomial expansion of  
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as far as the term in  x
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  and find its radius of convergence  R. 
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6. Find the interval of convergence  I  for the series  
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7. Find the power series expansion for  
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8. Use the binomial series expansion for  
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9. Find the fifth partial sum  T5(x) of the Taylor series for  f (x) = sin x  about a centre  

4
x    and find an upper bound to the error caused by replacing  sin x  by  T5(x)  for  

2
0 x   . 

 

 

 

10. Find the Maclaurin series expansion for  y = tan x  as far as the term in  x
4
. 

 

 

 

11. Find the Maclaurin series for    ln 1f x x   and find its interval of convergence. 
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12. Find the Fourier series for      24 2 2f x x x      

 

 

13. Find the Fourier sine series for      2 0 1f x x x x     

 

 

14. Find the Fourier cosine series for    
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