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3. Conic Sections 
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3.1 Standard Form  
 

All members of the family of curves known as conic sections can be generated, (as the 

name implies), from the intersections of a plane and a double cone.   The Cartesian 

equation of any conic section is a second order polynomial in x and y.   The only cases 

that we shall consider in this section are such that any axis of symmetry is parallel to a 

coordinate axis.   For all such cases, the Cartesian equation is of the form  
2 2 0Ax Cy Dx Ey F       

where A, C, D, E and F  are constants.   There is no “xy” term, so B = 0. 

 

The slope of the intersecting plane is related to the eccentricity, e of the conic section. 

 

Circle 

 

 
 

 

 

 

  
 

 

 
2 2 2x y r   

 

or, if the centre is at  ,h k ,     
2 2 2x h y k r      

 

A parametric form for a circle, centre at the origin, radius  r  is  

     , cos , sin , 0 2x y r r      . 
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Ellipse 
 

 

Cartesian equation: 
2 2

2 2
1

x y

a b
   

 2 2 2where 1b a e   

 

 

The circle is clearly a special case of the ellipse, with  e = 0  and  b = a = r. 

 

The longest diameter is the major axis (2a).   The shortest diameter is the minor axis (2b). 

 

If a mirror is made in the shape of an ellipse, then all rays emerging from one focus will, 

after reflection, converge on the other focus. 

 

A parameterization for the ellipse is      ˆ ˆcos sin , 0 2a b       r i j . 
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Ellipse (continued)  

 

The ellipse also possesses directrices at 
a

x
e

  ,  parallel to the minor axis.  

 

Let P be any point on the ellipse, let F be a focus and let D be point on the directrix 

nearer to F such that the line segment PD is parallel to the major axis. 

 

Then the eccentricity e is defined as   
PF

e
PD

  

The ellipse shown here has an eccentricity 0.6e  . 

 

The directrices of a circle are at infinity. 

 

Another feature of the ellipse is that the sum of the distances to the foci is constant for all 

points P on the ellipse. 

1 2 2PF PF a   

 

If the ellipse is translated so that the centre moves from  0,0  to  ,h k  then the equation 

changes to  

   
2 2

2 2
1

x h y k

a b

 
   
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Parabola 
 

 

 

 

 

 

 

 

y
2
  =  4ax  

 
 

 

 

 

 

One vertex is at the origin, one directrix is at x a   

and one focus is at  , 0a .  

The centre and the other vertex, focus and directrix are at infinity. 

 

If a mirror is made in the shape of a parabola, then all rays emerging from the focus will, 

after reflection, travel in parallel straight lines to infinity (where the other focus is).   The 

primary mirrors of most telescopes follow a paraboloid shape. 
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Hyperbola  
 

 

 

 

 

 

 

 

 
2 2

2 2
1

x y

a b
   

 2 2 2where 1b a e   

 

The hyperbola has two separate 

branches. 

As the curve retreats towards infinity, 

the curve approaches the asymptotes  

 
2 2

2 2
0 , .

x y bx
y

a b a

 
     

 
 

The distance between the two vertices is the major axis (2a). 

If a mirror is made in the shape of an hyperbola, then all rays emerging from one focus 

will, after reflection, appear to be diverging from the other focus. 

 

Circles and ellipses are closed curves.   Parabolas and hyperbolas are open curves. 

 

A special case of the hyperbola occurs when the eccentricity 

is 2e   and it is rotated 45  from the standard 

orientation.   The asymptotes line up with the coordinate 

axes, the graph lies entirely in the first and third quadrants 

and the Cartesian equation is   xy = k. 

 

This is the rectangular hyperbola. 
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Degenerate conic sections arise when the intersecting plane passes through the apex of 

the cone.   Two cases are: 

 
2 2

2 2
0 1: 0

x y
e

a b
       

 

 
2 2

2 2
1: 0

x y
e

a b
      

 

 

Another degenerate case is 

           
2 2

2 2
1

x y

a b
     
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Example 3.1.1  

 

Classify the conic section whose Cartesian equation is   2 23 3y x  . 
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Example 3.1.2  

 

Classify the conic section whose Cartesian equation is  2 221 28 168 168x y x y   . 
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Example 3.1.3  

 

Classify the conic section whose Cartesian equation is  2 2 2 4 6 0x y x y     . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generally, for non-degenerate conic sections with  B = 0 , the major axis is parallel to a 

coordinate axis and  

A C      circle,  

otherwise 

A, C same sign              ellipse 

one of A, C zero            parabola 

A, C opposite sign         hyperbola 
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Example 3.1.4 

 

Find the equation of the vertically-oriented parabola that passes through the points 

   0,0 , 2, 2  and  4,0  and find the location of the vertex and focus and the equation 

of the directrix.   Identify the vertex, focus, semi latus rectum and directrix on a sketch of 

the parabola. 
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Example 3.1.4   (continued) 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ENGI 3425 3.1  – Standard Form Page 3-12 

 

Example 3.1.5 

 

Find the Cartesian equation of the ellipse with foci at  2, 3   and  6, 3  and 

eccentricity 0.8.   Also find the equations of the directrices. 
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Example 3.1.6  

 

A bridge is supported by a parabolic arch which has a maximum height of 8 m and is 

20 m wide at ground level.   A road passes directly under the vertex of the arch.   What is 

the height of the arch 5 m away from the centreline of the road?  
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3.2 General Conic Sections 

 

If the major axis of an ellipse, parabola or hyperbola is not parallel to one of the 

coordinate axes, then the Cartesian equation of the conic section will include a term in xy.   

The general equation of a conic section is  

 
2 2 0Ax Bxy Cy Dx Ey F        

 

The conic section can be classified as follows:  

Find the discriminant 2 4B AC     

If the conic section is not degenerate, then  

0   ellipse (circle if also 0B   and C A ) 

0   parabola 

0   hyperbola (rectangular if also C A  ) 

Note that opposite signs for A, C guarantee that a non-degenerate conic is a hyperbola. 

 

 

Example 3.2.1  

 

Classify the conic section whose Cartesian equation is 2 24 6 9 36x xy y     

 

 
2 24 6 9 36 0 4, 6, 9x xy y A B C          
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Example 3.2.2   

 

Classify the conic section whose Cartesian equation is 2 23 6 3 12x xy y     
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Example 3.2.3   

 

Classify the conic section whose Cartesian equation is 2 22 6 4x xy y x      
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Example 3.2.4  

 

Classify the conic section whose Cartesian equation is 2 23 2 2 1 0x xy y x y        

 

 
2 23 2 2 1 0 1, 3, 2x xy y x y A B C           

 
2 4 9 4 1 2 9 8 1 0B AC              

 

The equation does have real solutions:   

2 1 5
0 1 0

2
y x x x

 
          and    

2 1 3
0 2 2 1 0

2
x y y y

 
        

It is harder to show that this conic section is non-degenerate.  

0   hyperbola  

 

The centre of the hyperbola is at  2, 1  and the asymptotes are 1y x   and 1
2

y x     
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3.3 Polar Form for Conic Sections   [not examinable in ENGI 3425] 

 

Conic sections may also be described compactly in polar coordinates, with one focus 

placed at the pole:  

1 cos

l
r

e 



 

 

where, for ellipses and hyperbolas,  
2b

l
a

  is the “semi latus rectum”, which is the 

distance, parallel to the minor axis and the directrix, between the focus and the curve.   In 

the case of the parabola, 2l a .  

 

In some applications this polar form is preferred to the standard Cartesian form.   The 

analysis of the motion of a particle due to an inverse-square-law-force (such as gravity), 

whose source is at one focus, is such an application. 

 

 

Ellipse 

 

 
 

 

 

 

 

 

 

  



ENGI 3425 3.3 – Polar Form Page 3-19 

 

Parabola 

1 cos

l
r





 

 

Hyperbola 

 

On the right branch of the hyperbola 0r  .  
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Moving up to three dimensions, we have the family of quadric surfaces (Chapter 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End of Chapter 3 
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