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4.1 Classification of Quadric Surfaces   
 

We shall consider only the simplest cases, where any planes of symmetry are located on the 

Cartesian coordinate planes.   In nearly all cases, this eliminates “cross-product terms”, such as 

xy, from the Cartesian equation of a surface.   Except for the paraboloids, the centre is at the 

origin and the Cartesian equations involve only  x
2
, y

2
, z

2
  and constants. 

 

The five main types of quadric surface are:  

 

The ellipsoid (axis lengths  a, b, c)  
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The axis intercepts are at 

     ,0,0 , 0, ,0 and 0,0,a b c   .  

 

All three coordinate planes are 

planes of symmetry. 

 

The cross-sections in the three 

coordinate planes are all ellipses. 

 

Special cases (which are surfaces of revolution):  

a = b > c :   oblate spheroid (a “squashed sphere”) 

a = b < c :   prolate spheroid (a “stretched sphere” or cigar shape) 

a = b = c :   sphere 

 

Hyperboloid of One Sheet   (Ellipse axis lengths   a ,  b ; aligned along the  z axis) 

 

1
2

2

2

2

2

2


c

z

b

y

a

x
  

 

For hyperboloids, the central axis is 

associated with the “odd sign out”. 

 

In the case illustrated, the hyperboloid is 

aligned along the z axis. 

 

The axis intercepts are at 

   ,0,0 and 0, ,0a b  . 

The vertical cross sections in the x-z and y-z 

planes are hyperbolae. 

All horizontal cross sections are ellipses.  
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Hyperboloid of Two Sheets  (Ellipse axis lengths   b ,  c ; aligned along the  x axis) 
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For hyperboloids, the central axis 

is associated with the “odd sign 

out”. 

 

In the case illustrated, the 

hyperboloid is aligned along the x 

axis. 

 

The axis intercepts are at 

 ,0,0a  only. 

 

Vertical cross sections parallel to the y-z plane are either ellipses or null. 

 

All cross sections containing the x axis are hyperbolae. 

 

 

 

 

Elliptic Paraboloid      
(Ellipse axis lengths   a ,  b ;  

aligned along the  z axis) 
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For paraboloids, the central axis is 

associated with the “odd exponent out”. 

 

In the case illustrated, the paraboloid is aligned 

along the z axis. 

 

The only axis intercept is at the origin. 

 

The vertical cross sections in the x-z and y-z planes 

are parabolae. 

All horizontal cross sections are ellipses (for z > 0). 
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Hyperbolic Paraboloid    (Hyperbola axis length   a  or  b;  aligned along the  z axis) 
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For paraboloids, the central axis is 

associated with the “odd exponent 

out”. 

 

In the case illustrated, the 

paraboloid is aligned along the z 

axis. 

 

The only axis intercept is at the 

origin. 

 

The vertical cross section in the x-z plane is an upward-opening parabola. 

The vertical cross section in the y-z plane is a downward-opening parabola. 

All horizontal cross sections are hyperbolae, (except for a point at z = 0). 

 

The plots of the five standard quadric surfaces shown here were generated in the software 

package Maple.   The Maple worksheet is available from a link at  

"http://www.engr.mun.ca/~ggeorge/3425/demos/index.html". 

 

Degenerate Cases:   
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Example 4.1  

 

Classify the quadric surface, whose Cartesian equation is   2x  =  3y
2
  +  4z

2
 . 
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Example 4.2  

 

Classify the quadric surface, whose Cartesian equation is   z
2
  =  1 + x

2
 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.3  

 

Classify the quadric surface, whose Cartesian equation is   x
2
     y

2
  +  z

2
  +  1  =  0 . 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

More examples are in the problem sets.
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[Space for additional notes] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[End of Chapter 4] 
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