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8. Multiple Integration    
 

This chapter provides only a very brief introduction to the major topic of multiple 

integration.    Uses of multiple integration include the evaluation of areas, volumes, 

masses, total charge on a surface and the location of a centre-of-mass.   The issue of 

integration over non-flat surfaces is beyond the scope of ENGI 3425. 
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8.1 Double Integrals (Cartesian Coordinates)    
 

Example 8.1.1    

 

Find the area shown (assuming SI units). 
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Example 8.1.1   (continued) 

 

Suppose that the surface density on the rectangle is    =  x
 2

y.   Find the mass of the 

rectangle. 

 

The element of mass is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OR 

 

We can choose to sum horizontally first: 
7 5

2

2 1
m x y dx dy    

 
7 5

2

2 1
m y x dx dy    

 

 

The inner integral has no dependency at all on y, in its limits or in 

its integrand.   It can therefore be extracted as a “constant” factor 

from inside the outer integral. 
 

  
5 7

2

1 2
m x dx y dy    

which is exactly the same form as before, leading to the same value of 930 kg. 
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A double integral  ,
D

f x y dA  may be separated into a pair of single integrals if  

 the region D is a rectangle, with sides parallel to the coordinate axes; and 

 the integrand is separable:   f (x, y)  =  g(x) h(y). 

 

 

     
2 2

1 1

,
D

x y

x y

f x y dA g x h y dy dx    

 

   
2 2

1 1

x y

x y

g x dx h y dy
   
   
   
   
   

 

This was the case in Example 8.1.1. 

 

 

Example 8.1.2    

 

The triangular region shown here has surface density    =  x + y.  

Find the mass of the triangular plate. 
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Example 8.1.2   (continued) 

 

OR  
 

We can choose to sum horizontally first (re-iterate): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generally: 

 

In Cartesian coordinates on the xy-plane, the rectangular element of area is 

              ΔA   =   Δx Δy . 

Summing all such elements of area along a vertical 

strip, the area of the elementary strip is 

 
 

 h x

y g x

y x


 
  
 
 
  

Summing all the strips across the region R, the total 

area of the region is: 

 
 

 h xb

x a y g x

A y x
 

  
    
  
  

   

In the limit as the elements   Δx and Δy   shrink to 

zero, this sum becomes  

 

 

 

1

h xb

x a y g x

A dy dx
 

    

 

If the surface density   σ   within the region is a function of location, σ = f (x, y), then the 

mass of the region is 

  
 

 

,

h xb

x a y g x

m f x y dy dx
 

 
 
 
 

   

The inner integral must be evaluated first. 
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Re-iteration: 

 

One may reverse the order of integration by 

summing the elements of 

area   ΔA   horizontally first, then adding the 

strips across the region from bottom to 

top.   This generates the double integral for 

the total area of the region 

 

 

 

1

q yd

y c x p y

A dx dy
 

 
 
 
 

   

  

The mass becomes 

  
 

 

,

q yd

y c x p y

m f x y dx dy
 

 
 
 
 

   

 

Choose the orientation of elementary strips that generates the simpler double integration. 

 

For example, 

  

  

 

 

 

 

 is preferable to    
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Example 8.1.3    

 

Evaluate  26 2
R

I x y dA   

where   R   is the region enclosed by the parabola  x = y
2
   and the line   x + y = 2. 

 

 

The upper boundary changes form at   x = 1. 

The left boundary is the same throughout   R. 

The right boundary is the same throughout   R. 

Therefore choose horizontal strips. 

 
2

2

21

2

6 2

y

y

I x y dx dy





    
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8.2 Double Integrals (Plane Polar Coordinates)    
 

The Jacobian of the transformation from Cartesian to plane polar coordinates is  

 

 

 

,

,

r rx yx y
r

x yr  


 


 

The element of area is therefore  

dA  =  dx dy  =  r dr dθ 

 

 

Example 8.2.1    

 

Find the area enclosed by one loop of the curve   r  =  cos 2θ . 

 

 

Boundaries: 

 

 

 

Area: 
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In general, in plane polar coordinates, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

, cos , sin
D

h

g

f x y dA f r r r dr d



 

      

 

 

Example 8.2.2   

 

Find the centre of mass for a plate of surface density 
2 2

k

x y
 


, whose boundary is 

the portion of the circle   x
2
 + y

2
 = a

2
   that is inside the first quadrant.   k  and  a  are 

positive constants. 

 

 

Use plane polar coordinates. 

Boundaries: 
The positive x-axis is the line   θ = 0. 

The positive y-axis is the line   θ = π /2 . 

The circle is   r
2
 = a

2
 ,  which is   r = a. 

 

Mass: 

Surface density  
2 2

k

x y
 


 . 
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Example 8.2.2  (continued) 

 

First Moments about the x-axis:   
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8.3 Triple Integrals    
 

The concepts for double integrals (surfaces) extend naturally to triple integrals (volumes). 

The element of volume, in terms of the Cartesian coordinate system (x, y, z) and another 

orthogonal coordinate system (u, v, w), is 

 
 

 

, ,

, ,

x y z
dV dx dy dz du dv dw

u v w


 


 

and 

        
 

  

 

 

 2 2 2

1 1 1

,

,

, ,
, , , , , , , , , ,

, ,
V

w v w u v w

w v w u v w

x y z
f x y z dV f x u v w y u v w z u v w du dv dw

u v w




     

 

The most common choices for non-Cartesian coordinate systems in 3 are: 

 

Cylindrical Polar Coordinates: 

 

cos

sin

x

y

z z

 

 







 

for which the differential volume is 

 
 

 

, ,

, ,

x y z
dV d d dz d d dz

z
    

 


 


 

 

Spherical Polar Coordinates: 

 

sin cos

sin sin

cos

x r

y r

z r

 

 









 

for which the differential volume is 

 
 

 
2

, ,
sin

, ,

x y z
dV dr d d r dr d d

r
    

 


 


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Example 8.3.1:    

 

Verify the formula 34
3

V a  for the volume of a sphere of radius a. 

 

 

Start by placing the origin at the centre of the sphere. 
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Example 8.3.2:    

 

The density of an object is equal to the reciprocal of the distance from the origin. 

Find the mass and the average density inside the sphere   r = a . 

 

 

Use spherical polar coordinates. 

Density: 

  

 

 

Mass: 
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8.4 Second Moments of Area    
 

The second moment, (also known as the second moment of area or the area moment of 

inertia) is a property of a cross section that can be used to predict the resistance of beams 

to bending and deflection, among other uses.  

 

Just as the element of first moment of area about the x-axis is xM y A   , 

 

the element of second moment of area about the x-axis is 2

xI y A    and  

the element of second moment of area about the y-axis is 2

yI x A   . 

 

Summing all such elements over a plane region R in the limit as 0A  , for a region R 

of constant surface density, the second moments of area about the coordinate axes are   
2

R

xI y dA     and   2

R

yI x dA   

We are usually interested in the second moments about the centroid  ,x y  (which is also 

the centre of mass when the density is constant):  

 
2

R

xI y y dA     and    
2

R

yI x x dA   

Where possible, we choose coordinate axes that pass through the centroid. 

 

We can also define the polar moment of area 

 

 2 2 2

R R

x yI I I x y dA r dA       

 

 

A related concept is [mass] moment of inertia    2 2 2 2

R R

I x y dm x y dA     ,  

where    surface density.   The SI units of moment of inertia are kg m
2
.     

 

The kinetic energy of a rigid body rotating at angular speed   about the origin is  
21

2
E I .    We shall not examine this application of second moments in ENGI 3425.  
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Example 8.4.1   

 

Find the second moments of area for a uniform circular disc of radius a.  

 

 

The centroid of the disc is at the centre of the circle. 

Place the origin there.   Use plane polar coordinates. 

 

2

R

xI y dA   
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Example 8.4.2   

 

Find the second moments of area for a uniform rectangle of base b and height h.  

 

 

 

Place the origin at the centre of the 

rectangle. 

 

Use Cartesian coordinates.  

Note that  A bh   

 

2

R

xI y dA   
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Two other standard second moments of area about the centroid are:  

 

Triangle 

 

2

bh
A    

 
3

36
x

bh
I   

 

 

 

Semi-circle 

 

21

2
A a  

 
4

2

64
1 .28

8 9
x y

a
I I





 
   

 
   and   

4

8
y

a
I


  

 

 

 

The second moment of area of a collection of regions that share the same centroid is just 

the sum of the separate second moments. 

 

When a region has a hole in it, centered on the centroid of the complete region, then the 

second moment of area of the region is the difference between the second moment for the 

complete region (with the hole filled in) and the second moment for the hole. 
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Example 8.4.3  

 

Find the second moments of area of an annulus (ring) of inner radius 2 cm and outer 

radius 3 cm about its centroid. 

 

 

The region is the difference between two circular discs, which share the same centroid, at 

the origin.    
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Parallel Axis Theorem  
 

The second moment of a composite 

shape can be found by shifting the 

reference axis of the standard second 

moment of each section from the 

centroidal axis of that section to a 

parallel axis that passes through the 

centroid of the composite shape. 

 

If the x axis passes through the 

centroid then the second moment xI   

about an axis x  parallel to the x axis 

and a distance  b  away from it will be 

related to xI : 

 
2 2

R

x xI y A I y dA        

 

xI     
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Example 8.4.4 

 

Find the second moment of area of this cross section of a guide rail about its centroid. 
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Example 8.4.4   (continued)  
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Example 8.5.1 

 

A swimming pool is filled to a depth of 2 m.   It has a rectangular end wall of width 5 m.  

Find the force due to the water on the end wall.   Assume that the density of the water is  
31000 kg m    and that the acceleration due to gravity is 29.81m sg   . 
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Example 8.5.2 

 

A full trough of liquid of constant density    has a vertical side wall in the shape of a 

triangle joining the points    4, 4 , 2, 4  and the origin.   Find the total hydrostatic force 

on this side wall, in terms of   and  g.   
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Example 8.5.3 

 

A hemisphere of radius 6 m has its centre at the origin, with its flat face on the equatorial 

plane (the x-y plane), such that 0z   everywhere on the hemisphere.   The interior of the 

sphere consists of material whose density is proportional to cos .    Find the location of 

the centre of mass of the hemisphere.  
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Example 8.5.3   (continued) 
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Example 8.5.4  (based on a question in the final examination of 2014) 

 
A tank in the shape of a right circular cylinder of cross sectional radius  R  is lying on its 

curved side and is filled up to the half-way point with incompressible fluid of density   .    

Find the hydrostatic force on the semi-circular end wall due to the fluid (as a function of 

, g  and R). 

 

 

Method using double integration in plane polar coordinates: 
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Example 8.5.4  (continued) 
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Example 8.5.5 

 

A trough has vertical trapezoidal end walls as shown in the diagram. 

Find the total hydrostatic force  F  on this end wall due to a liquid of density   that fills 

it from its base at 1y y  to its top at 2 1y y y h   . 
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Example 8.5.5   (continued) 
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Example 8.5.5   (continued)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two previous examples are both special cases of this general result   
 2 2

6

gh t b
F

 
 : 

Example 8.5.1 (rectangle):   
 4 5 10

5, 2 10
6

g
t b h F g




 
       

 

Example 8.5.2 (apex-down triangle):    

 16 6 0
6, 0, 4 16

6

g
t b h F g




 
       
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