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Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections 5.1-5.2]

The joint probability mass function of two discrete random quantities X, Y is
p(x,y) = P[X=x and Y =y]

The marginal probability mass functions are

Py (X) = ;p(x, y) P (Y) = D p(xY)

Example 7.01

Find the marginal p.m.f.s for the following joint p.m.f.

p(xy) y=3 y=4 y=5 Px (X)
x=0 .30 10 .20

x=1 .20 .05 A5

P (Y)

Like any other probability mass function,

a joint p.m.f. must be non-negative for all (x, y) and be coherent, ZZ p(x, y) = 1.
VX vy

It is easy to check that both conditions are satisfied in example 7.01.

The random quantities X and Y are independent if and only if
P(xY) = P ()P (¥) V(xY)

An equivalent statement is P[(X =x)N(Y =y)] = P[X =x]-P[Y =y] V(xY)
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In example 7.01, p, (0)- p, (4)=.60x.15=.09, but p(0,4)=.10.
Therefore X and Y are dependent,
[despite p(x,3)=py (X)-p, (3) for x=0 and x=11].

For any two possible events A and B, conditional probability is defined by

P[ANB]

P[A|B] = W , Which leads to the conditional probability mass functions
p(x,y) p(x,y)
(yIx) = and py . (X]y) = —==.
PYIx (%) XI¥ b (y)
In example 7.01,
p(xY) y=3 y=4 y=5 Px (X)
x=0 30 10 20 .60
x=1 20 .05 15 40

Py (Y) 50 15 35 1
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Joint Probability Density Functions [for bonus questions only]

The continuous analogue to the discrete joint probability mass function is the joint
probability density function, f(x,y).

It must satisfy the conditions f (x,y)>0 V(x,y) and j:j: f(xy)dydx = 1.
Joint density functions are related to probability statements by integration over intervals:
P[(a<X <b)N(c<Y <d)] I .[ (x,y)dx dy

Marginal p.d.f.s are defined by

fy (X) = J.jo f(x,y)dy and f,(y)= Ii f(x y)dx

Conditional p.d.f.s are defined by

f(xy) f(xy)

fyx (Y1%) = fx—(x) and  fyy (x]y) = f,(y)

Two continuous distributions are independent if and only if

f(xy) = fx(x)-fy (y) v(xy)

Example 7.02 (Navidi, exercises 2.6, page 156, question 20) [bonus question only]

Let X denote the amount of shrinkage (in %) undergone by a randomly chosen fibre of a
certain type when heated to a temperature of 120°C. Let Y represent the additional
shrinkage (in %) when the fibre is heated to 140°C. The joint probability density
function of X and Y is given by

2
f(xy) = 48;(9y (3<x<4 and 0.5<y<1)
0 (otherwise)

(@) Find P[X <3.25 and Y >0.8].
(b) Find the marginal probability density functions f, (x) and f, (y).
(c) Are X and Y independent? Explain.

325 1 |
(@) P[x<325and Y>08] = [ [ f(xy)dxay 0.3 N
0.8
48xy 48 (3% J‘ , 0.5
dxdy = — X dX - d L]
_[OBL 29), sl Y 3 3,05 4

y_3 48[105625 9)(1—0.512) _ 61
Ta9| 2], |3, 49 2 3 490 =
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Example 7.02 (continued)

1
% 1 48xy? 48 |3 16 ( 1) 2X
x (%) I_m (x.y) dy Io.s 29 49){3 . 49\ 8) 7

(for 3<x<4 only) and

4

o 4 48xy? 48 ,| x* 24 ,
f =If,d=j dx = 2y2| X | = 22y2(16-9) =
A I Gl P a2 [l Ml D e

(for 0.5<y<1 only).

(c) Forall (x,y)suchthat 3<x<4 and 0.5<y<]1,

2x 24y*  48xy?

Therefore yes, X and Y are independent.

Whenever f(x,y)=g(x)-h(y) V(x,y) on a rectangular domain aligned with the
coordinate axes (or on all of R ?), the random quantities X and Y are independent.

These concepts of joint probability distributions (both discrete and continuous) can be
extended to the cases of three or more random quantities.
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Expected Value
El(X.Y)] = Y h(x,y)- p(x,y) or jw IOO h(xy) f (xy)dx dy
Xy —00d —00

A measure of linear dependence is the covariance of X and Y :

Cov[X,Y] = E[(X —E[XI)(Y —E[Y])] = ;%‘,(X—ux)(y—uy)p(x, y)

or, in the continuous case,
Cov[X,Y] = E[(X —E[XI)(Y ~EIY])] I I (x= 1 )(y =12, ) f (% y)dx dy

Manipulate the double summation:
Cov[X,Y] = ;;(W—uxy—m + fhy 14, )P(X, Y)

= ;;xyp(x,y) - ﬂx;y'; p(xy) - M;X;p(x,y) + uxm;; p(xy)

= E[XY] — ,uXE[Y] — ,uYE[X] + Ay Ly
Therefore

Cov[X,Y] = E[XY]-E[X]-E[Y]

for both discrete and continuous random quantities.
Note that V[ X] = Cov[ X, X].

In Example 7.01, find the covariance of X and Y :

p(xy) y=3 y=4 y=5 Py (X)
Xx=0 30 10 20 60
x=1 20 05 15 40

Py (Y) 50 15 35 1
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Example 7.01 (continued)

3 4 5

0x3x.30 0x4x.10 0x5x.20

>
=[O X
<<

1x3x.20 1x4x.05 1x5x.15

Cov[X,Y] = E[XY]-E[X]-E[Y]

Note that the covariance depends on the units of measurement. If X is re-scaled by a

factor ¢ and Y by afactor k, then

Cov[cX, kY] = E[cXKY]|-E[cX]-E[KY] = ckE[XY]-cE[X]-KE[Y]

= ck(E[XY]-E[X]-E[Y]) = ckCov[X,Y]

A special case is V[cX] = Cov[cX,cX ]| = c*V[X].

This dependence on the units of measurement of the random quantities can be eliminated
by dividing the covariance by the product of the standard deviations of the two random

guantities.
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The correlation coefficientof X and Y is  Corr(X,Y) = pyy =

_ Cov[X,Y] :E[XY]—E[X]-E[Y]
\/V[X]°V[Y] Ox " Oy

In Example 7.01,
E[X*] =

VIX] =

Example 7.02  For a joint uniform probability distribution:
(and noting p o ZZ(X—,UX)(y—,uy)):
Xy

I

X ‘ X ‘ X ‘ X ‘ X

¥ ¥ ¥

.J":.v‘:'{].l ‘

X = iy X = i, x= i X = X =

In general, for constants a, b, ¢, d, with a and ¢ both positive or both negative,

Corr(aX +b,cY +d) = Corr(X,Y)

Also: -1 < p < +1.
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Rule of thumb:
|p|>.8 = strong correlation

5<|p|.<8 = moderate correlation
|p|<.5 = weak correlation

In the example above, p =0.0224 = very weak correlation (almost uncorrelated).

X,Y areindependent = p(x,y) =
= E[XY] = 2> xy-p(x)-p(y) = 2% p(x)-Dy-p(y) = E[X]-E[Y]
= Cov[X,Y] =

It then follows that
X,Y areindependent = X,Y areuncorrelated (o =0), but

X,Y areuncorrelated = X,Y areindependent.

Counterexample (7.03):

Let the points shown be equally likely. Then the value of Y is completely determined
by the value of X . The two random quantities are thus highly dependent. Yet they are
uncorrelated!
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Linear Combinations of Random Quantities

Let the random quantity Y be a linear combination of n random quantities X; :
n
Y = Z ai XI
i=1
n
then E[Y] = E| D> aX;|=
i=1

n n
But it can be shown that VIY] = ZZ a a; Cov[X;, X;]
=1 1=t
n
{X,} independent = | VIY] = » a’V[X;]
i1
Special case: n=2, a =1, a,==%1:
E[X, £ X,] = and
V[X, X,] =
Example 7.04

Two runners’ times in a race are independent random quantities T, and T, , with
Hy =40 of =4,
M, =42 0'22 =4,

Find E[T,-T, | and V[T, -T,].
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Distribution of the Sample Mean

If a random sample of size n is taken and the observed values are { X,, X,, X, ..., Xp, }
then the X; are independent and identically distributed (iid) (each with population
mean x and population variance o) and two more random quantities can be defined:

Sample total:

T:in

Sample mean:
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Unbiased estimator A for Biased estimator B for
some unknown parameter 6: the unknown parameter &:
Ji4) J(B)

! A 6 E[B] B
<hiaz+

E[A] = 6 E[B] = 6

Which estimator should we choose to estimate 67?

f4)

A minimum variance unbiased estimator is ideal.
[See also Problem Set 7 Question 8]
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Accuracy and Precision (Example 7.05)

[Navidi section 3.1; Devore section 6.1]

An archer fires several arrows at the same target.

Error

Systematic error + Random error

(error)?

(bias)? +  V[estimator]

Estimator A for @ is consistent iff
E[A] >0 and V[A]—>0
(as n— o)

A particular value a of an estimator A is an estimate.
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Sample Mean

A random sample of n values { X, X,, X, ..., X, } is drawn from a population of mean
4 and standard deviation o .

Then E[ X; |=u, V[X;]=c? andthesamplemean X = %in.
X estimates .
— EX]- 4, v[i]:%z

But, if 4 is unknown, then o2 is unknown (usually).

Sample Variance

_ ny X’ —(in)2

n(n-1)

and the sample standard deviationis S = ,/S?

n—1 = number of degrees of freedom for S?2.

Justification for the divisor (n —1) [not examinable]:

Using V[Y]= E[YZJ—(E[Y])2 for all random quantities Y ,
E[Y2] = VIY]+(E[Y]) = o + 4/

- E[z(xi—fﬂ - EHZXEJ - %(izxﬂ
-] - ) |-zt def(

setY=X; setY=YX;

[etvoca - ) - 3ivx ] - (1

- iid.)

I 1
>S5 ——
q, ™M
+ 9
i\ +

‘tl\)
| S~
QN |
[

>
b
[
—~ >
S S
B =
ql\.)
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S? is the minimum variance unbiased estimator of o? and
X is the minimum variance unbiased estimator of 1 .
Both estimators are also consistent.

Inference — Some Initial Considerations

Is a null hypothesis /¢, true (our “default belief”), or do we have sufficient evidence to
reject /(, in favour of the alternative hypothesis J(, ?

J, could be “defendant is not guilty” or “ 1= 4, , etc.
The corresponding /(, could be “defendant is guilty” or “ u # p,”, etc.
The burden of proof ison /, .

Sufficient
evidence for %A

Obtain

evidence

Insufficient
evidence

Bayesian analysis: u is treated as a random quantity. Data are used to modify prior
belief about «. Conclusions are drawn using both old and new information.
Classical analysis: Data are used to draw conclusions about ., without using any prior

information.
[End of Chapter 7]
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