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Continuous Probability Distributions  
 [Navidi sections 4.5-4.8 and 4.10; Devore sections 4.3-4.5] 
 
Chapter 6 introduced the concept of probability density functions for continuous random 
quantities.  The only standard distribution introduced then is the continuous uniform 
distribution, U(a, b), whose p.d.f. is 

( ) ( )1f x a x b
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This chapter will introduce some more standard probability density functions. 
 
 
 
 
The Normal Distribution 
 
The Gaussian or normal probability distribution is the single most important probability 
distribution.   It was first described by Abraham de Moivre in 1733 but bears the name of Karl 
Friedrich Gauss, who arrived at this distribution in 1809 when examining the distribution of 
errors in the measurement of the diameters of lunar craters.   It arises naturally in many other 
situations (especially the Central Limit Theorem). 
 
If a continuous random quantity   X   has a normal distribution with population mean   µ  and 
population variance  σ 2, then its probability density function is  
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which is positive for all  x . 
It is symmetric about x µ= . 
 
The cumulative distribution function for the 
normal distribution is      
.       

.      
   

which cannot be evaluated exactly in closed form except for certain special choices for  x. 
It can be shown that ( )lim 1

x
F x

→∞
= , as required by the condition for coherent probabilities. 
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Notation:    2~ N ,X    

      

 E X   population mean  

 2 V X   population variance 

Adding a constant  c  to  X :    

 

 

 

 

 

 

Influence of the variance 2  on the 

shape  of the normal probability curve: 

 

Low  
2
    High  2

    

 

 

 

 

 

    

 

Because there is no closed algebraic form for the c.d.f.   F x , the values are tabulated for one 

special choice of mean and variance:  20, 1   . 

 

Notation:  

 

 Z ~ N (0, 1)  is the  standard normal distribution,   

 

with  p.d.f. =   z   and   c.d.f.  =  z . 

 

Conversion from  2~ N ,X     to  Z ~ N (0, 1)   requires a linear shift of    and a change 

of scale by a factor of   . 

 

    PF x X x      

 

 

 

 

 

     

Thus         1 2 2 1P x X x z z            where   
x

z





  .  
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Symmetry     

 

 

 

 

 

 

 

 

 

A table of values of the standard normal distribution is on the inside front cover of the 

textbooks (Navidi, Table A.2; Devore Table A.3).    

A more precise table is available as an Excel spreadsheet file, on the course web site, at  

"www.engr.mun.ca/~ggeorge/4421/demos/zTables.xls". 

and also in Chapter 17 of these notes. 

 

Among the useful properties of the Normal distribution is that, unlike other probability 

distributions, any linear combination of normally distributed random quantities is also 

normally distributed.   For an uncorrelated set of  n  random quantities  iX , 

if   2~ N ,i i iX      then   2 2

1 1 1

~ N ,
i i i

n n n

i i i i i iY a X a a 
  

 
  

 
 

    

 

 

For all normal distributions, 

 
 

 

 
3

1
1P  X     

20

1
2P  X  

 
300

1
3P  X  

 

 

(z)       =        1    (+z) 
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Example 10.01:  

 

The weights of boxes of nails are known to be normally distributed to an excellent 

approximation, with mean 454 grammes and standard deviation 25 grammes.   What 

proportion of boxes weighs more than 500 grammes? 

 

    

 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Part of Table A.2 (also page 17-03): 

 

z       .00    .01       .02          .03 .04     ... 

 
1.9     0.02872  0.02807  0.02743  0.02680  0.02619 ... 

1.8     0.03593  0.03515  0.03438  0.03362  0.03288 ... 

1.7     0.04457  0.04363  0.04272  0.04182  0.04093 ... 

1.6     0.05480  0.05370  0.05262  0.05155  0.05050 ... 

1.5     0.06681  0.06552  0.06426  0.06301  0.06178 ... 
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Example 10.02 

 

Find the probability that a normally distributed random quantity is more than two and a half 

standard deviations away from its mean in either direction. 

 
 

 1
2

5 5
P 2 P

2 2
X X X     

    
              

    
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Example 10.03 

 

The strength of a set of steel bars is known to be normally distributed with a population mean 

of 5 kN  and a population variance of   (50 N)
2
 .   A client requires that at least 99% of all of 

these bars be stronger than 4,900 N.   Has this requirement been met? 
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Example 10.04  

 

Given that the random quantity  X  is normally distributed, find  c  such that  

 

    P[ X > c ] =  1% . 

 

(That is, find the 99th percentile.) 

        






 




c
ZcX PP   =  .01 .    

 

 

Notation:    z  =   the   (1  )100th  percentile of the standard normal distribution. 

   P Z z z       

 

Here,  .01  . 

 .01 .01z    

To find .01z  we need to look in      

table A.2  for the value  = .01000 .  

             

  

(2.32)   =   .01017  

(2.33)   =   .00990 

  .01z  =  2.33  (to 2 d.p.)    [as in the previous example] 

 

Using linear interpolation (which will not be required in tests or the exam):  

 

.01000  is 17/27 of the way from  (2.32)  to  (2.33). 

 

Thus  .01

17
2.32 0.01 2.326

27
z        .         

[The true value is 2.326, correct to three decimal places]. 

 

.01 .012.326 2.326
c

z c z


   



       . 

Therefore the 99
th

 percentile of any normal distribution is 2.326 standard deviations above the 

mean. 

 

 

Note: By symmetry, the fiftieth percentile ( .50z   the median) is at   z = 0 . 

  0 .50000 0       .  
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Example 10.05  

 

Find the quartiles for any normal distribution. 

 

      

 2~ N ,X    

 

 

 

 

 

 

 

 

 

By symmetry,  

    Lx a    and  

    Ux a    where 

 

    a    =   SIQR    (the semi-interquartile range). 

 

   .75 .75000
U

U

x
F x





 
    

 
  

 

But     (0.67) =  .74857   and    (0.68)  =  .75175 . 

 

 (to 2 s.f.) SIQR = 0.67   

 

Linear interpolation: 

.75000


 

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Example 10.06 

 

Pistons used in a certain type of engine have diameters that are known to follow a normal 

distribution with population mean 22.40 cm  and population standard deviation 0.03 cm.   

Cylinders for this type of engine have diameters that are also distributed normally, with mean 

22.50 cm and standard deviation 0.04 cm.  

 

What is the probability that a randomly chosen piston will fit inside a randomly chosen 

cylinder?    

 

 

Let PX  =  piston diameter       2
~ N 22.40, 0.03   

and CX  =  cylinder diameter    2
~ N 22.50, 0.04   

Note that the difference of two independent normally distributed random quantities also 

follows a normal distribution. 

 

The random selection of piston and cylinder       PX  and CX  are independent. 

The chosen piston fits inside the chosen cylinder iff  P CX X . 
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The normal distribution is symmetric, with over 99% of all values lying within three standard 

deviations of the mean.   The inner fences of any boxplot (beyond which any values are 

outliers) are 3×(semi-interquartile range) beyond the quartiles.   For a normal distribution, the 

quartiles are at  0.6745   (from Example 10.05 above). 

The inner fences are at  4 0.6745 2.698       . 

 

For any normal distribution,  

 P 2.698 2P 2.698 2P 2.698
X

X X


   


 
             

 
 

 2 2.698 .00698     

 

Therefore less than 0.7% of all values in a normal distribution are outliers. 

 

The outer fences are at 7 0.6745 4.7215        

and  P 4.7215 2 4.7215 .00000234X            

These values of the standard normal c.d.f.   z  were found from the Excel file  

"www.engr.mun.ca/~ggeorge/4421/demos/zCalculator.xls". 

 

Extreme outliers are therefore very rare for normal distributions, occurring by chance about 

once per half-million values. 

 

If a sample shows only positive values with a very strong positive skew and several extreme 

outliers on the positive side only, then one of the candidates for the probability distribution is 

the lognormal distribution. 

 

 

The Lognormal Distribution (not examinable; here for future reference only) 

 

If   X ~ N(,  2
), then the random quantity  XY e  has the lognormal distribution with 

parameters    and   2
, probability density function 

 

 

 

 

2

2

ln

21
0

2

y

f y e y
y





 




   

and 

 
2 /2

E Y e
 

    and    
2 22 2 2

V Y e e
    

   

 

Conversely, if the random quantity  X  is lognormal with parameters    and   2
, then ln X  is  

N(,  2
). 
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Graph of the standard lognormal probability density function  20, 1   : 

 

 
 

The mean value is 
2 /2 0 1/2 1.65e e

    , which is far beyond the mode of   0.4. 

The variance is  2 1 4.67e e  .   The extreme skew is obvious in a boxplot of 1000 values 

drawn randomly from this distribution: 

 
 

 

Example 10.07 

 

Find the median and the 80
th

 percentile for the lognormal distribution  20, 1   . 

 

 

If  X  is lognormal  20, 1   , then  ln X ~ N(, ). 

   
1 1 ln 0 1

P P ln ln P
2 2 21

X X Z


 
 

        
 

 

   
1

ln 0 ln 0
2

           1  

By a similar argument,  

      .80 .80P .80 ln .80000 0.84162X x x        

 .80 .80ln 0.84162x x    2.320  
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Example 10.08 

 

The time  T  to next failure of a certain process is known to be lognormally distributed.   A 

random sample of seven runs of the process has lifetimes (in days) of  

 

2.61114,  2.88284,  2.59738,  1.83647,  1.59441,  2.34576,  2.80628 

 

    (a) Estimate the parameters of the lognormal distribution 

    (b) Estimate the mean lifetime of the process. 

 

 

    (a) If  T  is lognormal, then  X = ln T  is normal. 

 Taking natural logarithms of the data: 

 

{  0.95979,  1.05878,  0.95450,  0.60784,  0.46651,  0.85261,  1.03186  } 

 
27 , 5.9319 , 5.3321n x x     

 

 
2

2
7 5.3321 5.93195.9319 2.1372

0.8474 , 0.050887
7 7 6 42

x s
 

     


 

 

0.2256s   

 

Therefore the estimates of the parameters of the lognormal distribution for  T are  

ˆ ˆ0.8474 and 0.2256   . 

 

    (b) The estimate of the mean lifetime is  

 

 2 0.8474 0.0508 /2ˆ ˆ /2
2.39e e

  
   days. 
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The Exponential Distribution  
 

This continuous probability distribution often arises in the consideration of lifetimes or 

waiting times and is a close relative of the discrete Poisson probability distribution.   Like the 

lognormal distribution, the exponential distribution has a strong positive skew. 

 

The probability density function is  

     
 

 

0

0 0

xe x
f x

x

  
 



  

       
The cumulative distribution function is  

 

    P ( )
x

F x X x f t dt


      

 

  P X x    

 

Also  E X       and    
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Example 10.09 

 

The random quantity   X   follows an exponential distribution with parameter    = 0.25 . 

Find    ,    and   P[X > 4] . 

 

 
   

 

 

 P 4X    

 

       

 

Note:  For any exponential distribution, P[X > ]  .368 . 

 

 

Example 10.10 

 

The arrival time   T   of the next customer follows an exponential distribution with a mean 

waiting time of five minutes.    

 

    (a) Find the probability that the next customer arrives within the next ten minutes. 

 

   

 

 

P[ T  10 ]   =   F (10)  =   

 

    

 

  

 

 

 

 

Relationship with the Poisson Distribution 

 

If  T  is the waiting time until the next occurrence of an event and if  T  follows an exponential 

distribution with mean waiting time   , then the parameter  
1




  is the average number of 

events per unit time.    

 

If  N  is the number of events in a time interval  , then  N  follows a Poisson distribution with 

the parameter  , (the number of events expected every   seconds). 
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Example 10.10   (continued) 

 

The arrival time   T   of the next customer follows an exponential distribution with a mean 

waiting time of five minutes.    

 

    (b) Find the probability that less than two customers arrive in the next ten minutes. 

 

 Let  N  =  number of customers who arrive in the next ten minutes, then 

1 1
.2

5



    per min.  =  2 per (10 min.) 

    N  follows a Poisson distribution with parameter 10 2    

 [We expect, on average, 2 customers every 10 minutes] 

 

   P 2 P 1N N     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  

 
     1/ 2/2 3P 2 .049787X e e e

    
 

 
 
 

          

 

 Therefore    P[ X >  + 2 ]      5.0%   for all exponential distributions. 

 

 Also     
1 1

0 P 0 P 2X X     
 

             

 

 Therefore  P[ | X   | > 2 ]    5.0% , a result similar to the normal distribution, 

except that all of the probability is in the upper tail only. 
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It can be shown that the sum of  n  independent random quantities, all of which follow an  

exponential distribution with the same parameter  , is an Erlang distribution with 

parameters  n  and   ,  ,n  .   Its probability density function, mean, variance and 

cumulative distribution function are 

 

 
 

 
1

0
1 !

n n
tt

f t e t
n

 
 


 ,  

n



  , 

2

2

n



   and 

 

   

 

 
 

1

0

0 0

P
1 0

!
j

n j
t

t

F t T t t
e t

j












   
 




 

 

The exponential distribution is clearly a special case:   1, . 

 

 

Example 10.10   (continued) 

 

The arrival time   T   of the next customer follows an exponential distribution with a mean 

waiting time of five minutes.    

 

    (c) Find the probability that the next two customers arrive in less than 20 minutes. 

 

T  follows an exponential distribution with 5   min 0.2  / min.   

Let 2T  = waiting time for the second customer, then  2 ~ 2,0.2T   

 

   2P 20 20T F    

 

 

 

 

 

 

 

 

 

The generalization of the Erlang distribution is the gamma distribution  ,r  , where  r  is 

a positive real number.   The p.d.f. is 

 

 
 

 
1

0
r r

tt
f t e t

r

 
 


 ,  where the gamma function is    1

0

r tr t e dt


     
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For reference purposes only, here are some other continuous probability distributions 

(Devore section 4.5; Navidi section 4.8):  

 

Weibull distribution  (parameters   and  ):   

 

 1 ( )
( ; , ) , 0

x
f x x e x

   
   

 

The exponential distribution is a special case of  

 the Weibull distribution when 1  .      . 

 the gamma distribution when  r = 1. 

However, neither of the Weibull and gamma distributions is a subset of the other.   

 

Another special case of the gamma distribution, with  r =  /2  and   = 1/2  

(where   = a natural number = “degrees of freedom”) is the chi-squared distribution:  

 

 
 

 
 

/2 1 2

/2

/1
; , 0

2 / 2

xf x x e x







  


 

 

The chi-squared distribution will occur later, in Chapter 14. 

 

 

Another distribution employed in many applications is the beta distribution:    
11

)()(

)(1
),,,;(










































AB

xB

AB

Ax

AB
BAxf  ,       A  x  B . 

It can model completion times for projects, between an extreme optimistic time of  A  and an 

extreme pessimistic time of  B . 

 

Other p.d.f.s can be found in any good textbook on probability and statistics. 

 

 

 

Probability Plots  
 

Given a random sample, a probability plot can determine whether the sample is consistent 

with some specified population.   This topic will be explored in a Minitab tutorial only.  

 

 

 

 

 

 

 

 

 

[End of Chapter 10] 
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[Space for Additional Notes] 
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