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Hypothesis Tests     
[Navidi  sections 6.1-6.8 and 6.12-6.13; Devore chapter 8 and sections 9.1-9.4] 

We begin with a reminder of page 7-14: 

 

Is a null hypothesis oH  true (our “default belief”), or do we have sufficient evidence to reject  

oH  in favour of the alternative hypothesis  AH ? 

 

oH   could be “defendant is not guilty” or “ o  ” , etc. 

The corresponding AH  could be “defendant is guilty” or “
o  ”, etc. 

The burden of proof is on AH .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of the two types of error, Type I is usually more serious. 

 

Bayesian analysis:    is treated as a random quantity.   Data are used to modify prior belief 

about .   Conclusions are drawn using both old and new information.   It may be possible to 

construct valid statements involving  oP true | dataH . 

 

Classical analysis:   Data are used to draw conclusions about the unknown constant , without 

using any prior information.   The results of a classical hypothesis test are often reported using 

p-values, where  oP | truep A H .   The event  A  represents the event of obtaining data at least 

as extreme as the observed data.   The probability that we usually want is  oP true | AH . 

But beware:  it is usually the case that    o oP | true P true |A AH H .    

In the criminal justice example, (as explored in a problem set question), this becomes  

   P incriminating evidence | defendent innocent P defendent innocent | incriminating evidence  

Indeed, the latter probability is sometimes orders of magnitude greater than the former. 

 

Classical hypothesis tests are close relatives of classical confidence intervals.    

We shall therefore revisit some examples from the previous two chapters. 
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Example 13.01   (Modification of Example 11.03) 

 

The rate of energy loss  X (watt) in a motor is known to be a normally distributed random 

quantity with standard deviation   = 3.0 W.   A random sample of 100 such motors produces a 

sample mean rate of energy loss of 58.3 W.   Is this sample consistent with 60 W  at a 1% 

level of significance?  

 

 

The null hypothesis is     

 

The alternative hypothesis is  

 

 

 

 

 

A “1% level of significance” is equivalent to a “99% level of confidence”. 

 

Construct a probability distribution on the [default] assumption that the null hypothesis is true: 

 

oH   true         

   

 

 

 

 

 

 

 

 

 

If oH  is true, then values outside the interval  ,L Uc c  occur in only 1% of all random samples 

drawn from this population.    Therefore, if and only if the random sample returns a value of x  

outside this interval, we will have sufficient evidence to reject the null hypothesis. 

 

58.3x    
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Example 13.01   (continued) 

 

The method above we shall refer to as “Method 1”. 

 

Two alternative methods involve a transformation from values of x  to values of  z  or  t  

(depending on whether or not the population variance 2  is known).  

 

Method 2: 

 

Determine how many standard errors the observed 

sample mean x  is away from the population mean   

if oH  is true.   In other words, transform x  into the 

equivalent value of z: 

 

obsz   

 

Any value x  that is observed to be more than 
/2

z  standard errors away from o  is considered, 

at a level of significance  , to be too unlikely to have occurred by chance, thereby providing 

sufficient evidence to reject the null hypothesis in favour of the alternative hypothesis. 

 

 

 

 

 

 

 

 

 

Method 3: 

 

Again convert x  to obsz . 

Evaluate obsPp Z z    . 

Iff p   then reject oH . 
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General method for two-tailed tests: 

 

State hypotheses: 
 

 o o:  H      vs.   A o:  H        

The burden of proof is on AH . 

 

Choose the level of significance   . 
 

State your assumptions   

(for example, the random quantity   X    

is nearly normal). 

 

Find    x  (the test statistic). 
 

If     is unknown, then estimate it using   s . 

 

Case 1:     is unknown and  n  is small   
 

 x  space      t  space 

 

Find   o /2, 1

s
t

n n



 

    
    Find  

1,2/ n
t


 

 

Iff   o /2, 1

s
x t

n n



 

     
   and  o

obs

x
t

s

n



 
 
 

 

or   o /2, 1

s
x t

n n



 

     
   Iff  obs| |

/2, 1
t t

n



 

 

then reject oH  in favour of  AH .    

 

Case 2:   n  is large (> 30)  is the same as Case 1 except that  

 
1,2/ n

t


  is replaced by  
2/,2/ 

zt 


 .      

Common values: .025 .0051.95996 , 2.57583z z   

 
 

Case 3:     is known  is the same as Case 2 except that   s   is replaced by  . 
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Example 13.02   (Modification of Example 11.04) 

 

The lifetime  X  of a particular brand of filaments is known to be normally distributed.   A 

random sample of six filaments is tested to destruction and they are found to last for an average 

of 1,008 hours with a sample standard deviation of 6.2 hours.   

 

Is there sufficient evidence, at a level of significance of 5%, to conclude that the population 

mean lifetime    is greater than 1000 hours? 

 

 

The null hypothesis is  

 

The alternative hypothesis is  

 

 

 

 

A “5% level of significance” is equivalent to a “95% level of confidence”. 

 

Construct a probability distribution on the 

assumption that the null hypothesis is just barely 

true, that is 1000  : 

 

oH  true         

  ~X  
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Example 13.02   (continued) 

 

Method 2: 

 

obst   

 

 

 

 

 

 

 

 

 

 

 

Method 3: 

 

When the population variance is unknown and the sample size is too small for z  to be an 

acceptable approximation to , 1nt  , Method 3 becomes difficult to use with standard printed 

statistical tables.   However, when statistical software is applied to these hypothesis test 

problems, the p-value of Method 3 is usually reported.   If this example were a question on a test 

or the final examination, then Method 3 should not be attempted. 

 

obst   
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General Method (upper-tailed tests):  
 

State hypotheses: 

 o o:  H      vs.   A o:  H        

      
 

The burden of proof is on AH . 

 

Choose the level of significance   . 
 

State your assumptions   

(for example, the random quantity   X    

is nearly normal). 
 

Find    x  (the test statistic). 
 

If     is unknown, then estimate it using   s . 

 

Case 1:     is unknown and  n  is small   
 

Method 1:       Method 2: 

Evaluate       Reject oH  iff 

 
 o , 1n

s
c t

n




 
   

 
   

 
o

obs , 1n

x
t t

s

n







 

 
 
 

 

Reject oH  iff x c .      

 

Method 3: 

Evaluate  o
obs

x
t

s

n




 
 
 

   and     obsPp T t    

 

Reject oH  iff p  . 

 

 

Case 2:   n  is large (> 30)  is the same as Case 1 except that  

 
, 1

t
n 

  is replaced by  ,t z   .      

Common values: .050 .0101.64485 , 2.32635z z   

 
 

Case 3:     is known  is the same as Case 2 except that   s   is replaced by  . 

 

Lower-tailed tests are mirror-images of upper-tailed tests. 
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General Method (lower-tailed tests):  
 

State hypotheses: 

 o o:  H      vs.   A o:  H       

 

The burden of proof is on AH . 

 

Choose the level of significance   . 
 

State your assumptions   

(for example, the random quantity   X    

is nearly normal). 
 

Find    x  (the test statistic). 
 

If     is unknown, then estimate it using   s . 

 

Case 1:     is unknown and  n  is small   
 

Method 1:       Method 2: 

Evaluate       Reject oH  iff 

 
 , 1n

s
c t

n




 
   

 
   

 obs , 1n

x
t t

s

n







  
 
 
 

 

Reject oH  iff x c .      

 

 

Method 3: 

Evaluate  obs

x
t

s

n




 
 
 

   and    p  =  P[ T  <  tobs]  

 

Reject oH  iff p  . 

 

 

Case 2:   n  is large (> 30)  is the same as Case 1 except that  

 
, 1

t
n 

  is replaced by  ,t z   .      

Common values: .050 .0101.64485 , 2.32635z z   

 
 

Case 3:     is known  is the same as Case 2 except that   s   is replaced by  . 
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  and the Probability of Committing a Type I Error: 

 

Let us explore the meaning of  , the probability of committing a Type I error, in the case when 

the alternative hypothesis is upper tailed, A o:  H : 

 

The boundary of the rejection region is calculated on 

the basis of the null hypothesis being just barely true;  

that is, the true population mean has a value right on 

the boundary between the two hypotheses. 

oH  will be rejected iff the sample mean x c . 

Rejection of oH  when it is true is a Type I error. 

In this case,  P[type I error] =  . 

 

 

 

If the true value of the population mean is less than 

o , then the true probability curve is to the left of the 

one used to calculate the boundary  c  of the rejection 

region.   The area of the rejection region decreases. 

 

The null hypothesis is still true, so rejecting oH  is still 

a type I error, but now  P[type I error] <  . 

 

 

 

If the true value of the population mean is greater than  

o , then the true probability curve is to the right of 

the one used to calculate the boundary c of the 

rejection region.   The area of the rejection region 

increases beyond  , but P[type I error] does not 

increase. 

 

The null hypothesis is now false, so rejecting oH  is  
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Example 13.03   (Modification of Example 12.01) 

 

A large corporation wishes to determine the effectiveness of a new training technique.   A 

random sample of 64 employees is tested after undergoing the new training technique and 

obtains a mean test score of 62.1 with a standard deviation of 5.12 .   Another random sample of 

100 employees, serving as a control group, is tested after undergoing the old training methods.   

The control group has a sample mean test score of 58.3 with a standard deviation of 6.30 . 

 

Use an appropriate hypothesis test to determine whether the new training technique has led to a 

significant increase in test scores. 

 

 

Test o new old A new old: vs. :    H H  

 

or, equivalently, o new old A new old: 0 vs. : 0      H H . 

 

It is reasonable to assume that the samples drawn from the two populations are independent. 

 

The sample sizes are large enough for us to estimate the unknown population variances 2  by 

the sample variances 2s  and to replace ,t   by z . 
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Example 13.04   (Modification of Example 12.04) 

 

An investigator wants to know which of two electric toasters has the greater ability to resist the 

abnormally high electrical currents that occur during an unprotected power surge.  Random 

samples of six toasters from factory A and five toasters from factory B were subjected to a 

destructive test, in which each toaster was subjected to increasing currents until it failed.   The 

distribution of currents at failure (measured in amperes) is known to be approximately normal for 

both products.  The results are as follows: 

 

Factory A: 20 28 24 26 23 26 

 

Factory B: 21 18 19 17 22 

 

At a 5% level of significance, can one conclude that there is any difference between the mean 

failure currents of the two types of toaster? 

 

 

Given in the question:  

 
 

 

2

2

~ N ,

~ N ,

A A A

B B B

X

X

 

 
 

An essential assumption is that  XA, XB are independent. 

 

The hypotheses being tested are  o A B A A B: 0 vs. : 0      H H    with   5%   

 

The summary statistics are  

6An    24.5Ax   2 7.9As   
2

1.316A

A

s

n
   

5Bn    19.4Bx   2 4.3Bs   
2

0.86B

B

s

n
   

 
2 2

2
. . 2.176 . . 1.475353A B

A B

s s
s e s e

n n
       

 
2

2 2

2 2
2 2

INT
1 1

1 1

A B

A B

A B

A A B B

s s

n n

s s

n n n n



  
  
  

  
             

 

   
 

2

2
2

2.176
INT INT 8.912 8

1.316 0.86

5 4

 
 
 

  
 
 

 
 

 

 

.025,8/2,
2.30600t t     
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Example 13.04   (continued) 

 

Method 1: 

 

The boundaries of the rejection region are at  

 

 o /2,, . .U Lc c t s e      

0 2.30600 1.475353 3.402     

 

24.5 19.4 5.1A B Ux x c      

 

Therefore reject oH  in favour of AH . 

OR 

 

 

Method 2: 

 

24.5 19.4 5.1A Bx x     

 

 

 
o

obs
. .

A Bx x
t

s e

  
   

 

/2,

5.1 0
3.456

1.475353
t 


    

 

Therefore reject oH  in favour of AH . 

OR 

 

 

Method 3  (requires access to software): 

 

obs 3.456t    

 

8 obsP .0086T t    
 

 

 

Therefore reject oH  in favour of AH . 

 

 

YES, there is a significant difference between the mean failure currents of the two types of 

toaster. 
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Classical Hypothesis Tests for Paired Data  
 

Example 13.05   (Modification of Example 12.05) 

 

Nine volunteers are tested before and after a training programme.   Based on the data below, can 

you conclude that the programme has improved test scores? 

 

 

Volunteer:   1  2  3  4  5  6  7  8  9   

 

After training:  75 66 69 45 54 85 58 91 62 

Before training: 72 65 64 39 51 85 52 92 58 

 

 

Test o D A D: 0 vs. : 0  H H   and choose 1%   

 

As discussed before in Example 12.05, the same individuals are present in both samples and 

there is very strong correlation between the samples.   Therefore a paired test, based on the 

sample differences, is required. 

 

Volunteer:   1  2  3  4  5  6  7  8  9   

 

Differences:   3  1  5  6  3  0  6 –1  4 

 

As before,  
2

2 9 133 27 13
9 , 3.0 , 6.5 2.549

9 8 2
D Dn d s s

 
      


 

. . 0.849836Ds
s e

n
    .010,8, 2.89646t t     

 

Method 1: 

 

o ,
Ds

c t
n

    0 2.89 0.84 2.461    

 

3.0d c   reject oH  

 

OR 

Method 2: 

 
o

obs

3.0 0
3.530

. . 0.849

d
t

s e

 
    

 

obs ,t t   reject oH  
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Note (not examinable):  

 

The correlation   is a measure of the linear dependence of a pair of random quantities. 

 

Independence    0    

 

The relationship between the t statistics for the unpaired and paired two sample t tests is  

 

unpair

pair
1

T
T





 

 

The unpaired  t  test can therefore be used only if the random quantities are uncorrelated. 

And, upon replacing the unknown underlying true correlation   by the observed sample 

correlation coefficient  r, the two observed values of  t  are related by 

unpair

pair

2 2

2
1 A B

A B

t
t

r s s

s s






 

where As  and Bs  are the two observed standard deviations from samples A and B respectively. 

 

In Example 13.05, r = .996,  leading to an error factor of  8.76... . 

unpair pair0.402 , 3.53t t   and one can verify that 3.53 0.402 8.76    
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Classical Hypothesis Tests on Differences in Population Proportions  
[Examinable in bonus questions only] 

Example 13.06   (Modification of Example 12.02) 

 

A random sample of 25 components (produced by one machine) yields 15 components that are 

longer than 10.0 cm.   Another random sample of 30 components (produced by another machine) 

yields 12 components that are longer than 10.0 cm.   Can one conclude, at a level of significance 

of 5%, that the two population proportions are different? 

 

 

The hypotheses to be tested are: o 1 2 A 1 2: vs. :p p p p H H ,  or, equivalently, 

o 1 2 A 1 2: 0 vs. : 0p p p p   H H ,  with 5%  . 

 

If the null hypothesis is true, then the two sample proportions 1

15
ˆ 0.6

25
p    and 2

12
ˆ 0.4

30
p    

are two estimates of the same population proportion  p.   A better estimate of  p  can be obtained 

by pooling the two sample proportions together: 

 

 
 

 
1 2

1 2

total # successes 15 12 27
ˆ

total # trials 25 30 55

x x
p

n n

 
   

 
 

 

Using Method 2, the sample standard error is  

1 2 1 2

ˆ ˆ ˆ ˆ 1 1 27 28 1 1
ˆ ˆ 0.135378

55 55 25 30

pq pq
s pq

n n n n

   
           

  
 

 1 2

obs

ˆ ˆ 0 .6 .4
1.477

0.135

p p
z

s

  
     

 

.025 obs1.95z z  .025z  

 

The Agresti-Caffo estimate is  

 

1 2

1 2

1 1 16 13 29
*

2 2 27 32 59

x x
p

n n

   
  

   
 

obs0.135 1.38s z     

with the same conclusion. 

 

Therefore there is insufficient evidence to reject oH . 
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Power of a Test   [Examinable in bonus questions only] 

 

Example 13.07    

 

The completion time  T  for the assembly of a product is known to follow a normal distribution 

to an excellent approximation, with a known population standard deviation  of 2.4 minutes.   The 

existing process has a mean completion time of 40.1 minutes.   A new process may decrease the 

mean completion time but won’t affect  .   T  will continue to follow a normal distribution.    

 

A customer will invest in the new process only if there is clear evidence (at a level of 

significance of 5%) that its mean completion time is less than 38.0 minutes. 

A random sample of six product assemblies is drawn.    

a) Set up the appropriate hypotheses to be tested. 

b) Find the critical value  c  below which an observed sample mean t  will cause the null 

hypothesis to be rejected at a level of significance of 5%. 

c) Find the probability that the customer will not invest in the new process when the true 

mean completion time is 37.0 minutes.    

 

 

It is given that, under the new process,   2
~ N , 2.4T             

(a) o A: 38.0 vs. : 38.0  H H    with   5 %     

 

(b) oc z
n




    

 
2.4

38.0 1.64 38.0 1.611
6

     

 Therefore  36.39c   minutes 

 

(c)  37.0 P | 37T c       

 

2.4
38 1.64 37

37 6
P P

2.4 2.4

6 6

c
Z Z

    
             

      
      
      

 

    
38 37

P 1.64 1.64 1.02 0.624
2.4

6

Z

 
 


        

  
  
  

 

 

 Therefore  37.0 73 %      
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Type II Errors, A More General Case  

 

o o A o: vs. :    H H ,  with     known  

(or  n  large enough for , 1nt z     and  2 2s  ). 

 

The probability   of 

committing a type II error 

depends on the true value of 

the parameter   . 

 

 

 

 

 1 o o 1P not rejecting |  false        H H  

 

 1 1P |X c             where  
oc z

n



   

 
o 1

1

1 P

z
c n

Z

n n




 


 
 

    
            

     
     
      

 

Therefore 

  1 o

1 z

n



 
 



 
 
   
  

  
  

 

 

The formula for a lower tail test is similar: 

  o 1

1 z

n



 
 



 
 
   
  

  
  

 

 

A two tail test is more complicated, as is the case of unknown variance and a small sample. 

 

The farther apart 1  and o  are, the less likely a type II error is and the greater the likelihood 

that the test can distinguish the two hypotheses correctly.   The power of the test is defined to be 

1  . 

 

[End of Chapter 13] 
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[Space for Additional Notes] 
 


	Hypothesis Tests
	Example 13.01
	General method for two-tailed tests
	Example 13.02
	General Method (upper-tailed tests)
	General Method (lower-tailed tests)
	α and Type I Errors
	Example 13.03
	Example 13.04
	Paired Data
	Population Proportions
	Power of a Test

