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6. The Gradient Vector - Review

If a curve in R?is represented by y =f(x), then

y=1(x)
Dix+Ax, v+ A0
Ay
Flx,»)
Mox
dy _ Iimﬂ _ im f (x+Ax)— f(x)
dx Q—>P AX AX—0 AX

If a surface in R® is represented by z =1 (X, y), then in aslice y = constant,

Dix+dx, v, z+4A2)
Mz
Flx.» z)
Mx

oz lim f(x+AX,y, z+A7)— f(X,Y,2)
ox M0 AX

Similarly,

oz lim f(x, y+Ay,z+Az)—f(x,y,12)
oy  Ay—0 Ay

In the plane of the independent variables:

o f(P) =
_ f(Q) =
dy dr = [dx dy 0]

I Chain rule:
dt _ofde ofdy
dt ox dt Oy dt
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.
df :{ﬂ ﬂ} fdx dy]’ = Vfdr
ox 0oy

where Vf (pronounced as “del f”) is the gradient vector.

At any point (x, y) in the domain, the value of the function f (x, y) changes at different
rates when one moves in different directions on the xy-plane.

Vf is a vector in the plane of the independent variables (the xy-plane).
The magnitude of Vf at a point (X, y) is the maximum instantaneous rate of increase of f
at that point. The direction of Vf at that point is the direction in which one would have

to start moving on the xy-plane in order to experience that maximum rate of increase,
(which is also at right angles to the contour f (x, y) = constant at that point).
Points where Vf =0 are critical points of f, (maximum, minimum or saddle point).

The directional derivative of f in the direction of the unit vector G is

Both vectors are in the plane of the independent variables.
The directional derivative is the component of Vf in the direction of Q.

N

0| cos @

VS D,f = |Vf

e

The results above can be extended to functions of more than two variables.

For the hypersurface z = f (X, X,, ..., X,) in R™™, the chain rule becomes

i _ V. dr

dt dt
T _ T

, Where

T lox ox,  ox, dt | dt dt dt
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Example 6.01

The electrostatic potential V at a point P(x, y, z) in R due to a point charge Q at the

origin is
= LQ where r = 4/x2+y2+22 .

Find the rate of change of V at the point (1, 2, 2) in the direction Kk —2i .

Find the maximum value of the directional derivative over all directions at any point.
Find the level surfaces.
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Example 6.01 (continued)
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Change of coordinates:

Suppose z=1f(x,y) (where (X, y) are Cartesian coordinates) and % is wanted, (where

(r, ) are plane polar coordinates). Then
AN
X F
NN

oz _ozox | oz0y
or oxor oyor

But x =rcosé, y =rsind
oz 02

— = —Cco0sf + ﬂsine
or OX oy

%z _ Q(—rsin Q) + Q(rcos@) can be found in a similar way.
00  OXx oy

In matrix form, the chain rule can be expressed concisely as

0z oX 0y ||oz
or| |or or||ox
oz| |ox oyl|az
| 00 060 00 || oy
Note that
ox oy
o(xy) = abs| det or o is the Jacobian
(r,0) ox oy
060 00 |
For the transformation from Cartesian to plane polar coordinates in R?, the Jacobian is
Axy) co§9 siné | _ ‘rc032¢9+rsin29‘ =r
o(r, 0) —rsin@ rcosé

Integrals over areas can therefore be transformed using the Jacobian:
_ oY) 4 g —
J.,;’. f(x y)dxdy = .U‘f (x,y) Ar. ) drdé = J.Aj.g(r,@)r dr dé

where f(x,y) = g(r, 6) atall points in the area A of integration.
We shall return to this topic later.
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Surfaces

The general Cartesian equation of a surface in R* (whether a plane or not) is of the form
f(x,y,2)=c

Imposing one constraint in a three-dimensional volume removes one degree of freedom,

leaving a two-dimensional surface.

At every point on the surface where Vf exists as a non-zero vector, Vf is orthogonal
(perpendicular) to the level surface of the function f that passes through that point.
Therefore, at every point on the surface f (x, y, z) = c,

the gradient vector Vf is normal to the tangent plane.

The tangent plane at the point P(x,,Y,,Z,) to the surface f(Xx,y,z)=c has the equation

Aef = Nef., where N = ?f\P

0

This formula fails only at locations where Vf =0.

Let ?f‘P =[n, n, n,]", then the normal line at the point P(x,, Yz, ) to the surface

f(x,y,z)=c has the equations

(which must be modified if any of the components n, n,, n, is zero).
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Example 6.02

Find the Cartesian equations of the tangent plane and normal line to the surface
z=x%+y atthe point (-1, 1, 2).
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Example 6.03

Find the angle between the surfaces x> +y*+ 7% = 4 and z*+x?* = 2 at the point

1, V2, 1).

Note: In the event that n,sn, < 0, then the two normal vectors meet at an obtuse angle
(they are pointing in approximately opposite directions). In that case use |ﬁ1-ﬁ2| to
obtain the acute angle.
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Gradient Operator

For three independent variables (x, y, z), the gradient operator is the “vector”
T
voil0go [0 0 o
ox "oy 0z ox 0y 0z
It operates on anything immediately to its right; either a scalar function or scalar field, or,
via a dot product or cross product, on a vector function or vector field.

Divergence

For an elementary area AA in a vector field F, ¥

i
—
N is an outward unit normal to the surface. /

AA is sufficiently small that F=[ f, f, f3]T is
approximately constant over AA.

Area =50

The element of flux A¢ from the vector field through AA is

Ag ~ FAAA
Now add up the elements of flux passing through the six faces of an elementary cuboid of
sides Ax, Ay, Az, volume AV = Ax Ay Az and with one corner at (x, y, z).

ﬂV T
4 Mz

l

...................

The front face is at (x + Ax) and the back face is at (x).

Back face: Ay = o X —=

= Ag, = x x+4hx x
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Divergence (continued)

Front face: N =
AA =
= Fen. =

= Ad. =

A +Ads

AV
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Example 6.04
Find the divergence of the vector F, giventhat F = V¢, ¢ = 4Q o
e

r=x+y*+22.

From example 6.01,
S -Q = +Q
Vo = r = F=-V¢ = r

¢ Arer® ¢ Arer
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Streamlines for Fluid Flow

Let V() be the velocity at any point (x,y,z) in an incompressible fluid. Because the

fluid is incompressible, the flow in to any region must be matched by the flow out from
that region (except when the region includes a source or a sink). This generates the
continuity equation

divv=0

Let us take the case of fluid flow parallel to the x-y plane everywhere, so that we can
ignore the third dimension and consider the flow in two dimensions only. Then

n

v=v(xYy) = u(xy)i + v(xY)]

The continuity equation then becomes

streamline

7

—t Ay
"4

— My —
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Example 6.05 (Example 4.03 repeated)

.
Find the streamlines associated with the velocity field v = { 2—y s X > }
X“+y° X4y

and find the streamline through the point (1, 0).

— X
J V= 2
X +Yy

us= ,
X* +y?

Verify that the equation of continuity is satisfied:
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Divergence (a scalar quantity):

divF = V.F
Curl (a vector quantity):

D0 g [oR_oR

oX oy oz

awnlF-=vxE=det|l ] > F |=|F_H

oy oz 0Ox

k2 F R 0k

0z . Ox 9y |

curl F=0 everywhere = F isan irrotational vector field.

Imagine a test particle immersed in and moving with a fluid. If the fluid motion does not
cause the particle to rotate on its own axis (even if the particle is swept along a curved
path), then the fluid flow is irrotational.

Example 6.06
Find curl F for F=[cosy —sinx O]T.
Also find the lines of force for the vector field F.
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Example 6.06 (continued)

Direction field plot for the vector field

[cosy —sinx 0] :

¥
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curl F = (siny —cosx) k
Lines of force: siny = A+cosx (—2<A<2)
and curl F = AK.

Along the highlighted lines (at 45° angles), A = 0 (and therefore curl F =0).
Where those lines cross, F = 0 also, (in additionto A=0 and curl F =0).

Half way along the lines between those intersections, | F | is at a maximum («E).
At the highlighted dots, | curl F | achieves its maximum value of 2 and F = 0 and
where the lines of force near a dot are in an anticlockwise direction, curl F = +2 k;
where the lines of force near a dot are in a clockwise direction, curl F =-2 k.
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All differentiable gradient-vector fields are irrotational:

curlgrad ¢ = VxV¢ = 0

Proof:

Also:

diveurl F = VeV xF = 0

Proof:

Let F=[f f, f,]' and f1x=2—il etc., then

The Laplacian of a twice-differentiable scalar field ¢ is:
T T 2 2 2
divgrad¢5 iii . %%% E@;;ﬁ+8(12§+8?5v2¢
OoX 0y 0z oX 0y 02 ox: o0y° oz
Laplace’s equation is

2 2 2
yig= 09,00 00
ox® 0y° oz
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Some Vector ldentities

xVf = curlgrad f = 0
.VxF = diveurlF = 0

<1 <1

Laplacianof V = V& = V-(VV) = divgrad V

V(fg)= fVvg + (Vf)g

Page 6-17

~- Vx (Vx ) = graddivF - curlcurl F

V-(gF) = (Vg)-F + g(V-F)
div(gF) = (grad g)eF + gdivF

?x(glf) = (@g)xlE + g(@xlf)
curl (g F) = (grad g)xF + gcurl F

V-(FxG) = (VxF)-G - F-(VxG)

div (F x G) = (curl F)eG — Fe(curl G)
?x(lfxé) = (G-?)IE - (IE ?)G n (V G)F _
where (F-V)G = (Flﬁ N |:2 N 561}

. (Fl 0G3 aG3 N j
OX
~ o~ . 0
so that (F-V) is the operator (Fl 3 Fz— + Fy— j
X z

VF-G) = (G-V)F + (F-V)G + Gx(VxF) + Fx(VxG)

[End of Chapter 6]
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[Space for Additional Notes]
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