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6. The Gradient Vector - Review     
 

If a curve in 2 is represented by   y = f (x) , then  

 

 
 

   
0

lim lim
Q P x

f x x f xdy y

dx x x  

 
 

 
 

 

If a surface in 3  is represented by   z = f (x, y) , then in a slice  y = constant,  

 

 
 

   
0

, , , ,
lim
x

f x x y z z f x y zz

x x 

  


 
 

Similarly,  

   
0

, , , ,
lim
y

f x y y z z f x y zz

y y 

  


 
 

 

In the plane of the independent variables: 

 

 f (P)  =  f 

 f (Q)  =  f + df 

  
T

0dx dydr  

 

 Chain rule: 

 
df f dx f dy

dt x dt y dt

 
 

 
 

    
f f

df dx dy
x y

 
  

 
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 
T

Tf f
df dx dy f

x y

  
   

  
dr  

where f  (pronounced as “del f”) is the gradient vector. 

 

At any point (x, y) in the domain, the value of the function  f (x, y) changes at different 

rates when one moves in different directions on the xy-plane.    

 

f  is a vector in the plane of the independent variables (the xy-plane).   

The magnitude of f at a point (x, y) is the maximum instantaneous rate of increase of  f  

at that point.   The direction of f at that point is the direction in which one would have 

to start moving on the xy-plane in order to experience that maximum rate of increase, 

(which is also at right angles to the contour   f (x, y) = constant   at that point). 

 

Points where f  0  are critical points of  f, (maximum, minimum or saddle point). 

 

The directional derivative of  f  in the direction of the unit vector  û  is  

 

ˆ
ˆD f f

u
u  

 

Both vectors are in the plane of the independent variables. 

The directional derivative is the component of f  in the direction of û. 

 

 
ˆ

ˆ cosD f f 
u

u  

 

 

 

 

 

 

     

 

 

 

The results above can be extended to functions of more than two variables. 

For the hypersurface  1 2, , , nz f x x x  in 1n , the chain rule becomes  

,
df d

f
dt dt


r

  where 

T T

1 2

1 2

and n

n

dxdx dxf f f d
f

x x x dt dt dt dt

     
         

r
  
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Example 6.01    

 

The electrostatic potential V  at a point P(x, y, z)  in  
3
 due to a point charge  Q  at the 

origin is  

2 2 21
, where .

4

Q
V r x y z

r
      

Find the rate of change of  V  at the point (1, 2, 2) in the direction  ˆˆ 2k i  . 

Find the maximum value of the directional derivative over all directions at any point. 

Find the level surfaces. 
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Example 6.01   (continued) 

 

 

 



ENGI 4430 Gradient, Divergence and Curl Page 6-05 

 

Change of coordinates:  

 

Suppose   z = f (x, y)  (where (x, y) are Cartesian coordinates) and 
z

r




 is wanted, (where  

(r, )  are plane polar coordinates).   Then  

 
 

z z x z y

r x r y r

    
  

    
 

But x  =  r cos  , y  =  r sin    

cos sin
z z z

r x y
 

  
  

  
 

   sin cos
z z z

r r
x y

 


  
  

  
 can be found in a similar way. 

 

In matrix form, the chain rule can be expressed concisely as  

.

z x y z

r r r x

z x y z

y  

        
        
      
        
             

 

Note that 

 

 

,
abs det is the 

,

x y

r rx y

x yr 

 

   
   
  
    
     

Jacobian  

For the transformation from Cartesian to plane polar coordinates in 
2
, the Jacobian is  

 

 
2 2

cos sin,
cos sin

sin cos,

x y
r r r

r rr

 
 

 


   


 

Integrals over areas can therefore be transformed using the Jacobian:  

   
 

 
 

,
, , ,

,
A AA

x y
f x y dx dy f x y dr d g r r dr d

r
  




 

   

where  f (x, y)  =  g(r, )  at all points in the area A of integration. 

We shall return to this topic later. 
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Surfaces  
 

The general Cartesian equation of a surface in 
3
 (whether a plane or not) is of the form 

f (x, y, z) = c 

Imposing one constraint in a three-dimensional volume removes one degree of freedom, 

leaving a two-dimensional surface. 

 

At every point on the surface where f  exists as a non-zero vector, f  is orthogonal 

(perpendicular) to the level surface of the function  f  that passes through that point. 

Therefore, at every point on the surface f (x, y, z) = c,  

 

the gradient vector f  is normal to the tangent plane. 

 

The tangent plane at the point  o o o, ,P x y z  to the surface  , ,f x y z c  has the equation 

 

o , where
P

f n r n r n   

 

This formula fails only at locations where f  0 . 

 

Let   
T

1 2 3P
f n n n , then the normal line at the point  o o o, ,P x y z  to the surface 

 , ,f x y z c  has the equations 

 

o o o

1 2 3

x x y y z z

n n n

  
   

 

(which must be modified if any of the components 1 2 3, ,n n n  is zero). 
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Example 6.02   

 

Find the Cartesian equations of the tangent plane and normal line to the surface  
2z x y   at the point  (1, 1, 2). 

 

 

 

 

 



ENGI 4430 Gradient, Divergence and Curl Page 6-08 

 

Example 6.03   

 

Find the angle between the surfaces  x
2
 + y

2
 + z

2
  =  4  and   z

2
 + x

2
  =  2  at the point  

(1, 2 , 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: In the event that 1 2 0n n , then the two normal vectors meet at an obtuse angle 

(they are pointing in approximately opposite directions).   In that case use 1 2n n  to 

obtain the acute angle. 
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Gradient Operator   
 

For three independent variables (x, y, z), the gradient operator is the “vector”  
T

ˆ ˆ ˆ
x y z x y z

      
     

      
i j k  

It operates on anything immediately to its right; either a scalar function or scalar field, or, 

via a dot product or cross product, on a vector function or vector field. 

 

 

 

Divergence  
 

For an elementary area  A  in a vector field  F ,  

 

n̂   is an outward unit normal to the surface. 

 

A  is sufficiently small that   
T

1 2 3f f fF   is 

approximately constant over A. 

 

The element of flux   from the vector field through A  is  

ˆ A  F n  

Now add up the elements of flux passing through the six faces of an elementary cuboid of 

sides  x, y, z , volume  V  =  x y z and with one corner at (x, y, z).    

 
 

The front face is at (x + x)  and the back face is at (x).  

 

Back face:  ˆ Bn  

 

   A   

 

 ˆ 
B

F n  

 

 B    
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Divergence   (continued) 

 

Front face:  ˆ Fn  

 

   A     

 

  ˆ 
F

F n     

 

 F    

 

 

F B

V

  
 


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Example 6.04  

 

Find the divergence of the vector F, given that F  =   , ,
4

Q

r



  

2 2 2 .r x y z    

 

 

From example 6.01,  

3 34 4

Q Q

r r
 

 

 
    r F r   
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Streamlines for Fluid Flow 
 

Let  v r  be the velocity at any point  , ,x y z  in an incompressible fluid.   Because the 

fluid is incompressible, the flow in to any region must be matched by the flow out from 

that region (except when the region includes a source or a sink).   This generates the 

continuity equation   
 

div v = 0 

 

Let us take the case of fluid flow parallel to the x-y plane everywhere, so that we can 

ignore the third dimension and consider the flow in two dimensions only.   Then 

 

     ˆ ˆ, , ,x y u x y v x y  v v i j  

 

The continuity equation then becomes  

 

 

 

 

 

 

  streamline 
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Example 6.05   (Example 4.03 repeated) 

 

Find the streamlines associated with the velocity field  

T

2 2 2 2

y x

x y x y

 
  

  
v  

and find the streamline through the point (1, 0). 

 

 

2 2 2 2
,

y x
u v

x y x y


 

 
 

 

Verify that the equation of continuity is satisfied: 
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Divergence (a scalar quantity):  

div F F  

Curl (a vector quantity):  

 

3 2
1

31
2

2 1
3

ˆ

ˆcurl det

ˆ

F F
F

y zx

FF
F

y z x

F F
F

z x y

    
   

    
   

      
     

     
   

     

i

F F j

k

  

 

curl F 0  everywhere      F   is an irrotational vector field.  

Imagine a test particle immersed in and moving with a fluid.   If the fluid motion does not 

cause the particle to rotate on its own axis (even if the particle is swept along a curved 

path), then the fluid flow is irrotational. 

 

 

Example 6.06  

 

Find  curl F   for    
T

cos sin 0y x F . 

Also find the lines of force for the vector field F . 
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Example 6.06   (continued) 

 

 

 

 

 

 

 

 

 

 

 

Direction field plot for the vector field F  =  [cos y  sin x   0]
T
 : 

 

      ˆcurl sin cosy x F k   

 

Lines of force:    sin cos 2 2y A x A       

 

   and ˆcurl AF k . 

 

Along the highlighted lines (at 45° angles), A = 0 (and therefore  curl F = 0). 

Where those lines cross, F = 0 also, (in addition to A = 0  and  curl F = 0).  

Half way along the lines between those intersections, | F | is at a maximum ( 2 ).  

At the highlighted dots, | curl F | achieves its maximum value of 2 and F = 0 and 

where the lines of force near a dot are in an anticlockwise direction, curl F = +2 k; 

where the lines of force near a dot are in a clockwise direction, curl F = –2 k. 
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All differentiable gradient-vector fields are irrotational:  

 

curl grad   0  

Proof:  

 

 

 

 

 

 

 

 

 

 

 

 

 

Also:  

div curl 0 F F   

Proof:  

 

 
T 1

1 2 3 1Let and etc., thenx

f
f f f f

x


 


F  

 

 

 

 

 

 

 

 

 

 

 

 

 

The Laplacian of a twice-differentiable scalar field   is: 
T T

2 2 2
2

2 2 2
div grad

x y z x y z x y z

     
 

           
        

           
 

Laplace’s equation is  
2 2 2

2

2 2 2
0

x y z

  


  
    

  
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Some Vector Identities 
 

0
KKK

==∇×∇ ff  grad curl  
0 curl div ==×∇⋅∇ FF

KKKK
 

 
( ) VVVV   grad div ofLaplacian 2 =∇⋅∇=∇=
KK

 
 

( ) ( )gfgfgf ∇+∇=∇
KKK

 
 
 

( ) ( ) FFFFF
KKKKKKKKKK

 curl curl div grad2 −=×∇×∇−⋅∇∇=∇  
 

( ) ( ) ( )FFF
KKKKKK
⋅∇+⋅∇=⋅∇ ggg  

div (g F)  =  (grad g)•F  +  g div F  
 

( ) ( ) ( )FFF
KKKKKK

×∇+×∇=×∇ ggg  
curl (g F)  =  (grad g)×F  +  g curl F  

 
( ) ( ) ( )GFGFGF

KKKKKKKKK
×∇⋅−⋅×∇=×⋅∇  

div (F × G)  =  (curl F)•G  −  F•(curl G)  
 
 

( ) ( ) ( ) ( ) ( )GFFGGFFGGF
KKKKKKKKKKKKKKK

⋅∇−⋅∇+∇⋅−∇⋅=××∇ , 

( )

k

j

iGF

ˆ

ˆ

ˆwhere

3
3

3
2

3
1

2
3

2
2

2
1

1
3

1
2

1
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

=∇⋅

z
G

F
y

G
F

x
G

F

z
GF

y
GF

x
GF

z
GF

y
GF

x
GF

KKK

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∇⋅
z

F
y

F
x

F 321operator    theis   that  so
KK

F  

 
( ) ( ) ( ) ( ) ( )GFFGGFFGGF

KKKKKKKKKKKKKKK
×∇×+×∇×+∇⋅+∇⋅=⋅∇  

 
 
 
 
 

[End of Chapter 6] 
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[Space for Additional Notes] 
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