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8. Line Integrals

Two applications of line integrals are treated here: the evaluation of work done on a
particle as it travels along a curve in the presence of a [vector field] force; and the
evaluation of the location of the centre of mass of a wire.

Work done:

The work done by a force F in moving an elementary distance AF along a curve C is
approximately the product of the component of the force in the direction of Ar and the
distance | Ar |travelled:

Integrating along the curve C yields the total work done by the force F in moving along
the curve C:

W =Jﬁ-df
C
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Example 8.01

Find the work done by F = [-y x z]T in moving once around the closed curve C
(defined in parametric form by x=cost, y=sint, z=0, 0<t<2x).
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Example 8.01 (continued)

Example 8.02
Find the work done by F =[x vy z]T in moving around the curve C (defined in

parametric form by x=cost, y=sint, z=0, 0<t<2r).
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If the initial and terminal points of a curve C are identical and the curve meets itself
nowhere else, then the curve is said to be a simple closed curve.

Notation:
When C is a simple closed curve, write jﬁ-d? as cﬁlf-df.
C C

F is a conservative vector field if and only if (jSlf-d? = 0 for all simple closed
c
curves C in the domain.

Be careful of where the endpoints are and of the order in which they appear (the

_ b ar fo_ dr
orientation of the curve). The identity Fe—dt = - F.— dt leads to the result
t dt Y dt

(f,lf-d? = —{ﬁlf-df v simple closed curves C
C c

Another Application of Line Integrals: The Mass of a Wire

Let C be asegment (t, <t<t,) of wire of line density p(x,y,z). Then

element of
tnass Mo

First moments about the coordinate planes:

The location (F) of the centre of mass of the wire is (F) = % ., where the moment

_ b 1% = 2 2 2

M :I pf’ﬁ dt, m= ,oE dt and % = ﬂ = (%J +(d_yj J{%] )
t dt t dt dt dt dt dt dt
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Example 8.03

Find the mass and centre of mass of a wire C (described in parametric form by
x=cost, y=sint, z=t, —z<t<z) of line density p=2z°.
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Example 8.03 (continued)
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Green’s Theorem

Some definitions:

Acurve C on R? (defined in parametric form by r(t) = x(t)i+y(t)j, a<t<b)is
closed iff (x(a), y(a)) = (x(b), y(b)).

The curve is simple iff F(t)=F(t,) forall t,t, suchthat a<t, <t, <b;
(that is, the curve neither touches nor intersects itself, except possibly at the end points).

Example 8.04
Two simple curves:
open closed
¥

D

S

Two non-simple curves:
open closed

Y

W

Orientation of closed curves:

A closed curve C has a positive orientation iff a point F(t) moves around C in an
anticlockwise sense as the value of the parameter t increases.
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Example 8.05
. . ¥
b mcreasing i=a AND F=h
f=a AND {=b
D D
x K/ x
e } mcreasmg
Positive orientation Negative orientation

Let D be the finite region of R? bounded by C. When a particle moves along a curve
with positive orientation, D is always to the left of the particle.

For a simple closed curve C enclosing a finite region D of R? and for any vector
function F = [ f, f, ]T that is differentiable everywhere on C and everywhere in D,

Green’s theorem is valid:
4}?.(;]? = J.J. of, ot dA
< ox oy
D

The region D is entirely in the xy-plane, so that the unit normal vector everywhere on D is
k. Letthe differential vector dA =dAK , then Green’s theorem can also be written as

@ﬁ.dr - ”(?xlf)-l% dA = H(curl F)-dA

Green’s theorem is valid if there are no singularities in D.
A [non-examinable] proof is provided at the end of this chapter.
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Example 8.06

[z
C

Example 8.07

_ X _
For F = { x+ ﬂ and C as shown, evaluate @F-d?.
N C
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Example 8.07 (continued)

E_ {x+y}
X=y
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Example 8.07 (continued)

OR  use Green’s theorem!
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Example 8.08
Find the work done by the force F = xyi + y?j in one circuit of the unit square.

¥
] p—=
o
[ S R |
—
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Path Independence

Gradient Vector Fields:
N oV }T

If F=VV,then F = | — —
oX oYy

Path Independence

If F=VV (or F=—VV),then V is a potential function for F.
Let the path C travel from point B, to point P,:
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Domain

A region Q of R? is a domain if and only if
1) For all points P, in Q, there exists a circle, centre P,, all of whose interior points

are inside Q; and
2) For all points P, and P, in Q, there exists a piecewise smooth curve C, entirely

in Q, from P, to P.

Example 8.09 Are these domains?
{xy)|y>0} {xy)[x=0}
¥ ¥
X X
¥ ¥
’ Ty g ’ \ }' o \
.y
I ¢ t "\
— | - o —_—
\ - ‘ s rx - S f X
\ Y
|

If a domain is not specified, then, by default, it is assumed to be all of R?.
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When a vector field F is defined on a simply connected domain Q, these statements are
all equivalent (that is, all of them are true or all of them are false):

= F=VV forsome scalar field V that is differentiable everywhere in Q;
IS conservative;

E
. Ilf-df is path-independent (has the same value no matter which path within Q
C

is chosen between the two endpoints, for any two endpoints in Q);
. jﬁ-d? = Vg — Vg (fOrany two endpoints in Q);
C

. (JSI—:-df = 0 for all closed curves C lying entirely in Q;
Cc

. 9L _ 0% everywhere in Q; and
oX oy

= VxF =0 everywhere in Q (so that the vector field F is irrotational).

There must be no singularities anywhere in the domain Q in order for the above set of
equivalencies to be valid.

Example 8.10

Evaluate I((2x+ y)dx + (x+3y2)dy) where C is any piecewise-smooth curve from
C

(0,0) to (1 2).
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Example 8.10 by direct evaluation of the line integral

Let us pursue instead a particular path from (0, 0) to (1, 2).

The straight line path C, is a segment of the line ¥
y=2x = X=1y. w2
= | = j((2x+y)dx + (x+3y2)dy) =
C,
(0, 0) .

An alternative evaluation of | = jlf-d? isto use x as the parameter in both integrals
(o

(that is, to express y in terms of x throughout). Then

= | = I((2x+y)dx + (x+3y2)dy) =
g,

An alternative path C, involves going round the other two sides Y
of the triangle, first from (0, 0) horizontally to (1, 0) then from (1, 2)
there vertically to (1, 2). o
Onthefirstleg y=0 = dy=0,

so that the second part of the integral vanishes.
Onthesecond leg x=1 = dx=0,

so that the first part of the integral vanishes.

Therefore
| = I((2x+y)dx + (x+3y2)dy) -

C
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Example 8.10 by direct evaluation of the line integral

Yet another possibility is C, an arc of the parabola y = 2X2. o
(1. 2)
= | = j<(2x+ y)dx + (x+3y2)dy) =
&
(0, 0 -

1,2

L2 _
Note that the above suggests that | = J.( )F-d? might be path-independent, because
0,0

evaluations along three different paths have all produced the same answer. But this is
not a proof of path independence. For a proof, one must establish that F is
conservative, either by finding the potential function, or by showing that curl F=0.
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Outline of a Proof of Green’s Theorem [not examinable]

Let F=P(x, y) +Q(x, y)
Consider a convex region D as shown. Left and right boundaries can be identified.

y=d

Then

od d c
= | (Q(a(y).y)-Q(p(y).y))dy =J‘ Q(a(y).y)dy + de(p(y) y) dy

J C
But the path along x = q(y) from y=c to y=d followed by the path along x= p(y)
from y=d back to y=c constitutes one complete circuit around the closed path C.

Q..
- J‘JladA—CﬁQdy
D C

Lower and upper boundaries for the region

y=h{x) can also be identified
S '”_ dA = j J. —dy dx
S ‘.-’_Hn.‘
. I:[ P(x y)}y_zxx dx
I . - [ (plens)-Plxata)) o
xz;’:g(.x} Ax L :_I:p(x,h(x))dx—I:P(X,Q(X))dx

But the path along y=g(x) from x=a to x=b followed by the path along y=h(x)
from x=b back to x =a constitutes one complete circuit around the closed path C.

”—dA_ (j)de - ”(_——j SCB(PdHQdy)
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Green’s Theorem (continued)

- |P dx 3
But F-dr_{Q} {dy}_de+Qdy

Therefore

H(@—@j dA = (JSl‘:-dr
s oxX oy J

This proof can be extended to non-convex regions. Simply divide them up into convex
sub-regions and apply Green’s theorem to each sub-region.

The line integrals along common interior
boundaries cancel out because they are travelled
in opposite directions along the same line. The
boundary of each convex sub-region D; is a

simple closed curve C;, for which Green’s
theorem is valid:

= ;iﬁmr = ;g[%_%J dA

Therefore Green’s theorem is also valid for any simply-connected region.

[End of Chapter 8]




ENGI 4430 Line Integrals; Green’s Theorem Page 8.20

[Space for Additional Notes]
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