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8.    Line Integrals 

 

Two applications of line integrals are treated here:  the evaluation of work done on a 

particle as it travels along a curve in the presence of a [vector field] force; and the 

evaluation of the location of the centre of mass of a wire. 

 

Work done:   
 

The work done by a force  F   in moving an elementary distance  r   along a curve C is 

approximately the product of the component of the force in the direction of r  and the 

distance | r  | travelled:  

 
 

 

 

 

Integrating along the curve C  yields the total work done by the force F  in moving along 

the curve C:  

C

W  F dr  
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Example 8.01   

 

Find the work done by  
T

y x z F  in moving once around the closed curve C 

(defined in parametric form by  cos , sin , 0, 0 2x t y t z t      ). 
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Example 8.01  (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 8.02  

Find the work done by  
T

x y zF  in moving around the curve C (defined in 

parametric form by cos , sin , 0, 0 2x t y t z t      ). 
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If the initial and terminal points of a curve C are identical and the curve meets itself 

nowhere else, then the curve is said to be a simple closed curve.  

 

Notation:  

When C is a simple closed curve, write 

C
F dr  as 

C
 F dr . 

 

F   is a conservative vector field if and only if  0

C

 F dr   for all simple closed 

curves C  in the domain. 

 

Be careful of where the endpoints are and of the order in which they appear (the 

orientation of the curve).   The identity 
1 0

0 1

t t

t t

d d
dt dt

dt dt
  

r r
F F  leads to the result  

C C

  F dr F dr  simple closed curves  C 

 

 

Another Application of Line Integrals:  The Mass of a Wire  

 

Let  C  be a segment  0 1t t t   of wire of line density  , ,x y z .   Then  

 

 

 

  

 

 

 

 

First moments about the coordinate planes: 

 

 

 

 

 

 

 

 

 

The location r  of the centre of mass of the wire is , where
m


M

r the moment  

2 2 2
1 1

0 0

, and .
t t

t t

ds ds ds d dx dy dz
dt m dt

dt dt dt dt dt dt dt
 

     
          

      
r

M r  
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Example 8.03  

 

Find the mass and centre of mass of a wire C (described in parametric form by  

cos , sin , ,x t y t z t t       )  of line density 2z  . 
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Example 8.03   (continued) 
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Green’s Theorem 

 

Some definitions:  

 

A curve  C  on 2  (defined in parametric form by      ˆ ˆ ,t x t y t a t b  r i j ) is 

closed iff           , ,x a y a x b y b . 

 

The curve is simple iff      1 2t tr r   for all 1 2,t t  such that  1 2a t t b   ;  

 (that is, the curve neither touches nor intersects itself, except possibly at the end points). 

 

 

Example 8.04   

 

Two simple curves:  

          open     closed 

 
 

Two non-simple curves: 

          open     closed 

 
 

 

 

 

Orientation of closed curves: 

 

A closed curve C  has a positive orientation iff a point  tr  moves around C  in an 

anticlockwise sense as the value of the parameter t increases. 
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Example 8.05  

 
 

           Positive orientation         Negative orientation 

 

 

Let  D  be the finite region of 2  bounded by C.    When a particle moves along a curve 

with positive orientation, D is always to the left of the particle. 

 

For a simple closed curve C enclosing a finite region D of 2  and for any vector 

function  
T

1 2f fF  that is differentiable everywhere on C and everywhere in D,  

Green’s theorem is valid:  

2 1

C D

f f
dA

x y

  
  

  
 F dr  

 

The region D is entirely in the xy-plane, so that the unit normal vector everywhere on D is 

k̂ .   Let the differential vector  ˆdAdA k , then Green’s theorem can also be written as  

 

   ˆ curl

C D D

dA   F dr F k F dA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Green’s theorem is valid if there are no singularities in D. 

A [non-examinable] proof is provided at the end of this chapter. 
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Example 8.06   

  

T

0 :
x

r

 
  
 

F  

 
 

 

 

 

 

 

 

 

 

 

Example 8.07  

 

For 
x y

x y

 
  

 
F   and C as shown, evaluate .

C
 F dr  
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Example 8.07   (continued) 

 

x y

x y

 
  

 
F  
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Example 8.07   (continued) 

 

OR use Green’s theorem! 
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Example 8.08  

Find the work done by the force 2ˆ ˆxy y F i j  in one circuit of the unit square. 
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Path Independence 

 

Gradient Vector Fields:   

If  ,VF   then  

T

V V

x y

  
  

  
F  

 

 

 

 

 

 

 

 

 

 

 

 

 

Path Independence   
 

If   orV V  F F  , then V  is a potential function for F . 

Let the path C travel from point 0P  to point 1P :  
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Domain   
 

A region   of 2  is a domain if and only if 

1) For all points 0P  in  , there exists a circle, centre 0P , all of whose interior points 

are inside  ; and 

2) For all points 0P  and 1P  in  , there exists a piecewise smooth curve C, entirely 

in  , from 0P  to 1P . 

 

 

Example 8.09  Are these domains? 

 

       { (x, y) | y > 0 }        { (x, y) | x  0 } 

 

 

 
 

         

 

 

 

 

 

 

 

 

If a domain is not specified, then, by default, it is assumed to be all of 2 . 
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When a vector field F  is defined on a simply connected domain  , these statements are 

all equivalent (that is, all of them are true or all of them are false): 

 VF     for some scalar field V  that is differentiable everywhere in  ; 

 F  is conservative; 

 

C
F dr  is path-independent (has the same value no matter which path within   

is chosen between the two endpoints, for any two endpoints in  ); 

 startend

C

V V F dr  (for any two endpoints in  ); 

 0

C

 F dr  for all closed curves C lying entirely in  ; 

 2 1f f

x y

 


 
  everywhere in  ; and 

  F 0   everywhere in   (so that the vector field F  is irrotational). 

There must be no singularities anywhere in the domain   in order for the above set of 

equivalencies to be valid. 

 

 

Example 8.10  

 

Evaluate     22 3

C

x y dx x y dy    where C is any piecewise-smooth curve from 

 0, 0  to  1, 2 . 
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Example 8.10   by direct evaluation of the line integral 

 

Let us pursue instead a particular path from (0, 0) to (1, 2). 

The straight line path 1C  is a segment of the line   

1
2

2y x x y   . 

 

    
1

22 3

C

I x y dx x y dy       

    

 

 

 

 

 

An alternative evaluation of 

1C

I  F dr  is to use  x  as the parameter in both integrals  

(that is, to express  y  in terms of  x  throughout).   Then 

 

    
1

22 3

C

I x y dx x y dy       

 

 

 

 

 

 

 

An alternative path 2C  involves going round the other two sides 

of the triangle, first from (0, 0) horizontally to (1, 0) then from 

there vertically to (1, 2). 

On the first leg 0 0y dy   ,  

so that the second part of the integral vanishes. 

On the second leg 1 0x dx   ,  

so that the first part of the integral vanishes. 

 

Therefore  

    
2

22 3

C

I x y dx x y dy    
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Example 8.10   by direct evaluation of the line integral 

 

Yet another possibility is 3C  an arc of the parabola  22y x . 

 

 

 

    
3

22 3

C

I x y dx x y dy        

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the above suggests that 
 

 1, 2

0, 0

I   F dr  might be path-independent, because 

evaluations along three different paths have all produced the same answer.   But this is 

not a proof of path independence.   For a proof, one must establish that F  is 

conservative, either by finding the potential function, or by showing that curl F 0 . 
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Outline of a Proof of Green’s Theorem   [not examinable] 
 

Let    ˆ ˆ, ,P x y Q x y F i j . 

Consider a convex region D as shown.   Left and right boundaries can be identified. 

 

Then   
 

 

 

D

d q y

c p y

Q Q
dA dx dy

x x

 


   
 

 
 

 
,

d
x q y

x p y
c

Q x y dy



 
   

 

            , , , ,

d d c

c c d

Q q y y Q p y y dy Q q y y dy Q p y y dy       

But the path along  x q y  from y c  to y d  followed by the path along  x p y  

from y d  back to y c  constitutes one complete circuit around the closed path C. 

CD

Q
dA Q dy

x


 

   

 

Lower and upper boundaries for the region 

can also be identified.  

 

 

D

b h x

a g x

P P
dA dy dx

y y

 


     

 

 
 

 
,

b
y h x

y g x
a

P x y dx



 
   

      , ,

b

a

P x h x P x g x dx   

     , ,

a b

b a

P x h x dx P x g x dx   
 

But the path along  y g x  from x a  to x b  followed by the path along  y h x  

from x b  back to x a  constitutes one complete circuit around the closed path C. 

CD

P
dA P dx

y


  

      
CD

Q P
dA P dx Q dy

x y

  
    

     
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Green’s Theorem (continued) 

 

But 
P dx

Pdx Qdy
Q dy

   
     
   

F dr  

 

Therefore  

CD

Q P
dA

x y

  
  

    F dr  

This proof can be extended to non-convex regions.   Simply divide them up into convex 

sub-regions and apply Green’s theorem to each sub-region. 

 

 

The line integrals along common interior 

boundaries cancel out because they are travelled 

in opposite directions along the same line.   The 

boundary of each convex sub-region iD  is a 

simple closed curve iC , for which Green’s 

theorem is valid: 

 

 

Ci iD

Q P
dA

x y

  
  

   F dr  

 

Ci i
i i D

Q P
dA

x y
 

  
   

   F dr  

 

Therefore Green’s theorem is also valid for any simply-connected region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[End of Chapter 8] 
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[Space for Additional Notes] 
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