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9. Surface Integrals - Projection Method

Surfaces in R®

In R? a surface can be represented by a vector parametric equation
r=x(uv)i+y(uv)j+z(uv)k
where u, v are parameters.

Example 9.01
The unit sphere, centre O, can be represented by
sin @ cos ¢ 0<g< d 0<d<2
. : <6< an <
r(0,¢) = | sin@sing d $<2m
T T
cosé

If every vertical line (parallel to the z-axis) in R® meets the surface no more than once,
then the surface can also be parameterized as

r(x,y) = y oras z="f(xy)
f(xy)

Example 9.02

z=J4-xX -y, {(xy)|xX*+y* <4} isa

A simple surface does not cross itself.
If the following condition is true:

{r(u,v,) =r(u,v,) = (u,v,)=(u,V,) forall pairs of points in the domain}
then the surface is simple.

The converse of this statement is not true.

This condition is sufficient, but it is not necessary for a surface to be simple.

The condition may fail on a simple surface at coordinate singularities. For example, one
of the angular parameters of the polar coordinate systems is undefined everywhere on the
z-axis, so that spherical polar (2, 0, 0) and (2, 0, x) both represent the same Cartesian
point (0, 0, 2). Yet a sphere remains simple at its z-intercepts.
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Tangent and Normal Vectors to Surfaces

A surface S is represented by T’(u,v). Examine the neighbourhood of a point P, at

r(up,V,). Hold parameter v constant at v, (its value at P,) and allow the other

parameter u to vary. This generates a slice through the two-dimensional surface, namely
a one-dimensional curve C, containing P, and represented by a vector parametric

equation T = F(u, vo) with only one freely-varying parameter (u).

o C

"

CV
If, instead, u is held constant at u, and v is allowed to vary, we obtain a different slice
containing Py, the curve C, : F(u,, V).

On each curve a unique tangent vector can be defined.

Cu

E

u}

At all points along C,,, a tangent vector is defined by T, = aﬂ(f(u,vo)).
u

[Note that this is not necessarily a unit tangent vector.]

o, o,
b = g (TUV) = = (r(uav)) -

O 0 /.
b = a—(r(uo,vo)).

If the two tangent vectors are not parallel and neither of these tangent vectors is the zero
vector, then they define the orientation of tangent plane to the surface at P, .

At P, the tangent vector becomes T,

Similarly, along the other curve C,, the tangent vector at P, is T,
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A normal vector to the tangent plane is

ox ox
o( X, ) . ou ov

where (X y) is the Jacobian det .
u.v) oy oy

ou ov

Cartesian parameters
With u=x, v=y, z=f(x,y), the components of the normal vector

N = Nji+Nyj+ Nk are:

_ay.z) _
" o)

A _ay)
" ) T " Ay)

= anormal vector to the surface z=f (X, y) at (X, Yy Zy) is
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If the normal vector N is continuous and non-zero over all of the surface S, then the
surface is said to be smooth.

Example 9.03

A sphere is smooth.
A cube is

A cone is

Surface Integrals (Projection Method)

This method is suitable mostly for surfaces which can be expressed easily in the
Cartesian form z =f (x, y).

The plane region D is the projection (or shadow) of the surface S: f(?)zc onto a
plane (usually the xy-plane) in a 1:1 manner.

Ay

i

T pd

The plane containing D has a constant unit normal .
N is any non-zero normal vector to the surface S.

A

N

-~
n

Uz =filx.y)
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Surface Integrals (Projection Method) (continued)

For z=f(x,y) and D =aregion of the xy-plane,

.
N:{—@ Loz 1} and A = k

_Ug(r Jj r\/gi Sij +1 dA

which is the projection method of integration of g(x,y,z) over the surface z=f (x,y).

Advantage:

Disadvantage:
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Example 9.04
Evaluate H z dS , where the surface S is the section of the cone z* = x*+y? in the first
S

octant, betweenz =2 and z = 4.
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Example 9.04 (continued)

Flux through a Surface (Projection Method)

Set g(F) = F, (the normal component of vector field F, that is, F resolved in the
direction of the normal N to the surface S), then proceed as before:

2l

.
where N:{—az oz 1}

ox oy
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Example 9.05

Find the flux due to the vector field F=rT through the sphere S, radius 2, centre the
origin.
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Example 9.05 (continued)
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Surface Integrals - Surface Method

When a surface S is defined in a vector parametric form ?:T’(u,v), one can lay a
coordinate grid (u, v) down on the surface S.
or or or or

A normal vector everywhere on Sis N = :
ou ov

N

e ¥ = cotist.

>

it = const.

ara

_X_

du dv

Tomes - j [ar
Advantage:

e only one integral to evaluate

Disadvantage:
e it is often difficult to find optimal parameters (u, v).

The total flux of a vector field F through a surface S is

® = ”F-ds— IFNds_”F-arxﬂd udv

oF
ou

(which involves the scalar triple product Fe

or
X—).
av)
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Example 9.06: (same as Example 9.04, but using the surface method).

Evaluate ” z dS , where the surface S is the section of the cone z* = x*+y? in the first
S

octant, betweenz =2 and z = 4.

Choose a convenient parametric net:
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Just as we used line integrals to find the mass and centre of mass of [one dimensional]
wires, so we can use surface integrals to find the mass and centre of mass of [two
dimensional] sheets.

Example 9.07

Find the centre of mass of the part of the unit sphere (of constant surface density) that lies
in the first octant.

1.2

D2 0a0EeE T Ty
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Example 9.07 (continued)
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Example 9.08 (same as Example 9.05, but using the surface method)

Find the flux due to the vector field F=rT through the sphere S, radius 2, centre the
origin.
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Example 9.09

Find the flux of the field F = [x y -z ]T across that part of x + 2y +z =8 that lies in
the first octant.

x+2y+0=28
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Example 9.09 (continued)
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Example 9.10

zk through the simple closed surface S
Z2
2

Find the total flux @ of the vector field F =
2 2

LI

a b c

=1

Use the parametric grid (0,¢), such that the displacement vector to any point on the
ellipsoid is
asiné cos¢
r(6,¢) = | bsingsing
ccosd

This grid is a generalisation of the spherical polar coordinate grid and covers the entire
surface of the ellipsoid for 0<0< 7, 0<¢<2r.

One can verify that x=asin@ cos¢g, y=Dbsindsing, z=ccosé does lie on the ellipsoid

XZ y2 22

—+25+— =1 forall values of (6,¢):

a~ b® ¢

x> y? 7% @a®sin@cos’¢ b?sin?@sin’g c®cos? O
2t et 3 = 2 + 2 + 2

a~ b c a b c

= sin? cos® ¢ +sin® sin’ ¢+ cos? @ = sin’ O(cos? g +sin® ) + cos® &
= sin?0+cos’0 =1 VO and V¢

The tangent vectors along the coordinate curves ¢ = constant and ¢ = constant are
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Example 9.10 (continued)
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For vector fields F(T),
Line integral: Ilf-df
C

Surface integral:

[[F(ryas = [[F(r)-Nas - ”FNdudV_+J' F.arxﬁdud

On a closed surface, take the sign such that N points outward.

Some Common Parametric Nets

1) The circular plate (x—xo)2 + (y—y0)2 < a*inthe plane z=2z,.

Let the parameters be r, & where O<r<a, 0<6<2x
X=X, +rcoséd, y=y,+rsind, z=1z,

cosd -rsiné

i

N o=+ Oor =+ j sind rcosd | =+rk
or o6 R

k 0 0

2) The circular cylinder (x—x,)° + (y—V,)" = a? with z,<z<7z,.
Let the parameters be z, @ where z,<z<z, 0<6<2x
X=acosd, y=asind, z=z

i 0 -asing
N= <+ 9F, 00 _ j 0 acosd | = i(—acose?— asin@j)
0z 06 Eq 0

Outward normal: N = acosé@i + asinéj

3)  The frustum of the circular cone w—w, = a,J(u-u,) +(v-v,) where

w, <ws<w, and w,<w,. Letthe parameters here be r, & where

o <r< -2 "o 0<0<2r

X=U=U,+rcosd, y=v=v +rsingd, z=w=w,+ar
N =+ ﬂ><ﬂ ==t
or 06

= i[(—ar cosf)i + (-arsing)] + rk|

Outward normal: N = arcos@i + arsindj — rk

cos@d -rsin@
sin@ rcos@
a 0

RO =) ==
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4) The portion of the elliptic paraboloid
z-z, = a*(x-x) +b*(y-y,) with z,<z<z<z
Let the parameters here be r, & where

-1 z,—1
\/2 s Sré\/z ————, 0<6<2x
a‘cos“@+Db°sin“ 6 a‘cos“d+b°sin“ 6
X=X, +rcos6, y=y,+rsing, z=z,+r(a’cos’0+b’sin’ 0

i cos @ —rsin@
N o=+ )y i sin@ r cosé
or 06 . . .

Kk 2r(a2c0329+b25|n26?) 2r2(b2—a2)sm9c050

= i[(—Zazrzcose)f + (-2br*sin@)j + r RJ
Outward normal: N = (2a’r*cos@)i + (2b’r’sind)j — rk

5)  The surface of the sphere (x—x, > +(y—y.)? +(z—z.)* =a2.
Let the parameters here be 6, ¢ where 0<0 <z, 0<¢<2rx
X=X, +asingcos¢y, y=y, +asingsing, z=1z, +acosd

N = =+ ﬂxﬂ ==
00 0¢

= +a’sind [(sinecosqﬁ) + (sin@sing)j + (cos®) k}
i+

acos@cosg -—-asinésing

acosé@dsing asindcosg

RO mmd ==

-asind 0

Outward normal: N = a’siné [(S|n0cos¢)
orR N= Lo (aé)x( asin@é) = a’sin@f = asindr
20 o4

+ (sin@sing)j + (cos®) k]

6)  The part of the plane A(x—x,)+B(y—Y.)+C(z—2,)=0 in the first octant with
A B,C>0 and Ax,+By,+Cz, >0.
Let the parameters be X,y where

0 < x Ax+By+Cz—By1 OSysAX°+By°+CZ°
A B
i1 0
N gxg_rj:ij 0 1 |- +[Ais By
X oy -
_ _B
K -Pe %

[End of Chapter 9]
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