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10. Gauss’ Divergence Theorem

Let S be a piecewise-smooth closed surface enclosing a volume V in R® and let F bea
vector field. Then

the net flux of F outof V is ® = <ij>ﬁ.d§ - CﬁJ.)FN ds,
S S

where F, is the component of F normal to the surface S.

But the divergence of F is a flux density, or an “outflow per unit volume” at a point.

Integrating div F over the entire enclosed volume must match the net flux out through the
boundary S of the volume V. Gauss’ divergence theorem then follows:

q}ﬁ-dé _ IJ V.EdV

Example 10.01 (Example 9.08 repeated)

Find the total flux @ of the vector field F=zk through the simple closed surface S

2 2 2
X* y* oz
S+ +5 =1
2 T
Use Gauss’ Divergence Theorem: Cﬁ) FedS = ”Idiv Fadv
S \Y%

F is differentiable everywhere in R®, so Gauss’ divergence theorem is valid.
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Example 10.02 Archimedes’ Principle

Gauss’ divergence theorem may be used to derive Archimedes’ principle for the buoyant force
on a body totally immersed in a fluid of constant density p (independent of depth). Examine
an elementary section of the surface S of the immersed body, at a depth z<0 below the

surface of the fluid:
surface

z=0 of fluid -
FLUID
z N k -z
Area AN
BODY 4

The pressure at any depth z is the weight of fluid per unit area from the column of fluid
above that area.

pressure = p =

The normal vector N to S is directed outward, but the hydrostatic force on the surface (due to
the pressure p) acts inward. The element of hydrostatic force on AS is

The element of buoyant force on AS is the component of the hydrostatic force in the direction
of k (vertically upwards):

Define F=pgzk and dS=NdS.
Summing over all such elements AS , the total buoyant force on the immersed object is
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Example 10.02 Archimedes’ Principle (continued)

Therefore the total buoyant force on an object fully immersed in a fluid equals the weight of
the fluid displaced by the immersed object (Archimedes’ principle).
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Gauss’ Law

A point charge g at the origin O generates an electric field
E=—1 r=_9
Arer drer

If S is asmooth simple closed surface not enclosing the charge, then the total flux through S
is

f

If S does enclose the charge, then one cannot use Gauss’ divergence theorem, because

Remedy:
Construct a surface S, identical to S except for a small hole cut where a narrow tube T

connects it to another surface S,, a sphere of radius a centre O and entirely inside S.  Let
S"= S, UTUS, (which is a simple closed surface), then

N
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Gauss’ Law (continued)
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Gauss’ Law (continued)

Gauss’ law for the net flux through any smooth simple closed surface S, in the presence of a
point charge q at the origin, then follows:

q .
R = if I
EFE‘dSZ " if S encloses O
S 0 otherwise
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Example 10.03 Poisson’s Equation

The exact location of the enclosed charge is immaterial, provided it is somewhere inside the
volume V enclosed by the surface S. The charge therefore does not need to be a concentrated
point charge, but can be spread out within the enclosed volume V. Let the charge density be
o (X, Y, 2), then the total charge enclosed by S is
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Stokes’ Theorem

Let F be a vector field acting parallel to the xy-plane. Represent its Cartesian components by
F=fi+fi=[f f,0]. Then

s 0
i — f
ox
VxF =] 9 f, = (?xlf)-Azé—fz—é—f1
oy ox 0y
k2o
0z

Green’s theorem can then be expressed in the form
g‘,ﬁ-dr - ”vxﬁ.k dA
C D
Now let us twist the simple closed curve C and its enclosed surface out of the xy-plane, so that

the unit normal vector k is replaced by a more general normal vector N .
If the surface S (that is bounded in R® by the simple closed curve C) can be represented by

z=f(x,y), then a normal vector at any point on S is

C is oriented coherently with respectto S if, as one travels along C with N pointing from
one’s feet to one’s head, S is always on one’s left side. The resulting generalization of
Green’s theorem is Stokes’ theorem:

4}ﬁ-df - Ijﬁxlf-N ds = H(curl F)-dS

This can be extended further, to a non-flat surface S with a non-constant normal vector N .
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Example 10.04

— T
Find the circulation of F = [ xyz xz e¥ ] around C : the unit square in the xz-plane.

z

o H

74
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Example 10.04 (continued)

Domain

A region Q of R® is a domain if and only if
1) For all points P, in Q, there exists a sphere, centre P,, all of whose interior points are

inside Q; and
2) For all points P, and P, in €, there exists a piecewise smooth curve C, entirely in Q,

from P, to P,.
A domain is simply connected if it “has no holes”.
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Example 10.05 Avre these regions simply-connected domains?
The interior of a sphere.
The interior of a torus.

The first octant.

On a simply-connected domain the following statements are either all true or all false:

Fedf = ¢(P,y) — ¢(P..) - independent of the path between the two points.

Example 10.06

Find a potential function ¢(x, y,z) for the vector field F = [ 2x 2y Zz]T.

First, check that a potential function exists at all:

AP
0X
o ~ 0
curlF =VxF=|j — 2y | =
oy
K o 27
0z
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Example 10.06 (continued)
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Example 10.07

Find a potential function for F = e¥ i +(xey + zZ)j +2yzk that has the value 1 at the origin.
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Maxwell’s Equations (not examinable in this course)

We have seen how Gauss’ and Stokes’ theorems have led to Poisson’s equation, relating the
electric intensity vector E to the electric charge density p:
VE=2
&
Where the permittivity is constant, the corresponding equation for the electric flux density D

is one of Maxwell’s equations: VD = p|

Another of Maxwell’s equations follows from the absence of isolated magnetic charges (no

magnetic monopoles): Ve-H = 0 = V-B = 0| where H is the magnetic intensity and
B is the magnetic flux density.

Faraday’s law, connecting electric intensity with the rate of change of magnetic flux density,

is @E-df‘ = —%” B«dS. Applying Stokes’ theorem to the left side produces
o S

VxE = 0B
ot
Ampére’s circuital law, | = (j-)I:I-dT, leadsto VxH = J +jd . Where
C

the current density is J =<7E=Pv V, o is the conductivity, p, is the volume charge

density; and the displacement charge density is f]d = %

The fourth Maxwell equation is

ol

UxH = 342

o))

t

The four Maxwell’s equations together allow the derivation of the equations of propagating
electromagnetic waves.

[End of Chapter 10]
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