13. Suggestions for the Formula Sheets

Below are some suggestions for many more formulae than can be placed easily on both sides of the two standard 8½"×11" sheets of paper for the final examination. It is strongly recommended that students compose their own formula sheets, to suit each individual's needs.

1. Parametric and Polar Curves

Distance
$$r(t) = |\vec{\mathbf{r}}(t)| = \sqrt{(x(t))^2 + (y(t))^2 + (z(t))^2}$$

To sketch $\vec{\mathbf{r}}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}}$: Find all values of t at which any of x(t), y(t), x'(t), y'(t) are zero, then construct a table for all four functions.

$$\frac{dy}{dt} = 0$$
 and $\frac{dx}{dt} \neq 0$ \Rightarrow horizontal tangent $\frac{dy}{dt} \neq 0$ and $\frac{dx}{dt} = 0$ \Rightarrow vertical tangent

Polar coordinates: $x = r \cos \theta$, $y = r \sin \theta$; $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$

 $(r, \theta + 2n\pi)$ and $(-r, \theta + (2n+1)\pi)$ $(n \in \mathbb{Z})$ are the same point as (r, θ) .

To sketch $r = f(\theta)$, sketch Cartesian y = f(x) with y = r, $x = \theta$, then transfer onto a polar sketch.

 $r(\theta_0) = 0$ and $r'(\theta_0) \neq 0 \implies \theta = \theta_0$ is a tangent at the pole.

2. <u>Vectors</u>

The **component** of vector $\vec{\mathbf{u}}$ in the direction of vector $\vec{\mathbf{v}}$ is $u_v = \vec{\mathbf{u}} \cdot \hat{\mathbf{v}} = u \cos \theta$

$$\frac{d}{dt}(\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}) = \frac{d\vec{\mathbf{u}}}{dt} \cdot \vec{\mathbf{v}} + \vec{\mathbf{u}} \cdot \frac{d\vec{\mathbf{v}}}{dt} \quad \text{and} \\
\frac{d}{dt}(\vec{\mathbf{u}} \times \vec{\mathbf{v}}) = \frac{d\vec{\mathbf{u}}}{dt} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} \times \frac{d\vec{\mathbf{v}}}{dt} = -\vec{\mathbf{v}} \times \frac{d\vec{\mathbf{u}}}{dt} + \vec{\mathbf{u}} \times \frac{d\vec{\mathbf{v}}}{dt}$$

The **distance along a curve** between two points whose parameter values are t_0 and t_1 is

$$L = \int_{t=t_0}^{t=t_1} ds = \int_{t_0}^{t_1} \frac{ds}{dt} dt = \int_{t_0}^{t_1} \left| \frac{d\vec{\mathbf{r}}}{dt} \right| dt = \int_{t_0}^{t_1} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$$

The **distance along a polar curve** $r = f(\theta)$ is $L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$

The unit tangent at any point on a curve is

$$\hat{\mathbf{T}} = \frac{d\vec{\mathbf{r}}}{dt} \div \left| \frac{d\vec{\mathbf{r}}}{dt} \right| = \frac{d\vec{\mathbf{r}}}{ds}$$

The unit principal normal at any point on a curve is

$$\hat{\mathbf{N}} = \rho \frac{d\hat{\mathbf{T}}}{ds} = \frac{d\hat{\mathbf{T}}}{dt} \div \left| \frac{d\hat{\mathbf{T}}}{dt} \right|, \text{ where } \rho = \text{ radius of curvature } = \frac{1}{\kappa}$$

The unit binormal is

$$\hat{\mathbf{B}} = \hat{\mathbf{T}} \times \hat{\mathbf{N}}$$

Velocity is
$$\vec{\mathbf{v}}(t) = \frac{d\vec{\mathbf{r}}}{dt}$$
, speed is $v(t) = |\vec{\mathbf{v}}(t)| = \left|\frac{d\vec{\mathbf{r}}}{dt}\right| = \frac{ds}{dt}$ and $\vec{\mathbf{v}} = v\hat{\mathbf{T}}$

The acceleration [vector] is

$$\vec{\mathbf{a}}(t) = \frac{d\vec{\mathbf{v}}}{dt} = \frac{d^2\vec{\mathbf{r}}}{dt^2} = \frac{d^2x}{dt^2}\hat{\mathbf{i}} + \frac{d^2y}{dt^2}\hat{\mathbf{j}} + \frac{d^2z}{dt^2}\hat{\mathbf{k}} = a_T\hat{\mathbf{T}} + a_N\hat{\mathbf{N}}$$

The **surface of revolution** of y = f(x) around y = c is $(y-c)^2 + z^2 = (f(x)-c)^2$

The curved surface area from x = a to x = b is $A = 2\pi \int_a^b |f(x) - c| \sqrt{1 + (f'(x))^2} dx$

The **area** between a curve and the x axis is $A = \int_{t_a}^{t_b} |y(t)| \frac{dx}{dt} dt$

The area swept out by a polar curve $(\alpha < \theta < \beta < \alpha + 2\pi)$ is $A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$

Components of velocity: $v_{\text{radial}} = \dot{r}$, $v_{\text{transverse}} = r \dot{\theta}$, $v_T = v$, $v_N \equiv 0$ Components of acceleration:

$$a_{\text{radial}} = \ddot{r} - r(\dot{\theta})^2$$
, $a_{\text{transverse}} = 2\dot{r}\dot{\theta} + r\ddot{\theta} = \frac{1}{r}\frac{d}{dt}(r^2\dot{\theta})$, $a_T = \frac{dv}{dt}$, $a_N = \kappa v^2 = \sqrt{a^2 - a_T^2}$

Line parallel to $\begin{bmatrix} a & b & c \end{bmatrix}^T$ through (x_0, y_0, z_0) is $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$

(except where any of a, b, c is zero)

Plane normal to $\begin{bmatrix} A & B & C \end{bmatrix}^T$ containing (x_o, y_o, z_o) is Ax + By + Cz + D = 0, where $D = -(Ax_o + By_o + Cz_o)$

3. <u>Multiple Integrals</u>

$$\iint_{D} f(x,y) dA = \int_{a}^{b} \int_{g(x)}^{h(x)} f(x,y) dy dx = \int_{c}^{d} \int_{p(y)}^{q(y)} f(x,y) dx dy$$
or
$$\iint_{D} f(x,y) dA = \int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r,\theta) r dr d\theta$$
Centre of mass:
$$\langle \vec{\mathbf{r}} \rangle = \frac{\vec{\mathbf{M}}}{m} = \left(\iint_{D} \sigma \vec{\mathbf{r}} dA \right) \div \left(\iint_{D} \sigma dA \right) \text{ or } \left(\iiint_{V} \rho \vec{\mathbf{r}} dV \right) \div \left(\iiint_{V} \rho dV \right)$$
Moment of inertia $I_{x} = \iint_{C} y^{2} \sigma dA$, $I_{y} = \iint_{C} x^{2} \sigma dA$, $I = I_{x} + I_{y} = \iint_{C} r^{2} \sigma dA$

Parallel axis theorem, second moment $I_{\chi'}$ of mass m about axis $y = y_0$ a distance b from the axis $y = \overline{y}$ through the centre of mass: $I_{\chi'} = I_{\chi} + mb^2$

4. <u>Streamlines (lines of force)</u>

Streamlines to $\vec{\mathbf{F}} = \begin{bmatrix} f_1 & f_2 & f_3 \end{bmatrix}^T$ are the solutions of $\frac{d\vec{\mathbf{r}}}{ds} = k\vec{\mathbf{F}}$ $\Rightarrow \frac{dx}{f_1} = \frac{dy}{f_2} = \frac{dz}{f_3}$ (except that $f_i = 0 \Rightarrow$ that component is constant).

5. Numerical Integration

[a,b] divided into n equal intervals. $h = \frac{b-a}{n}$

Trapezoidal rule:
$$\int_{a}^{b} f(x)dx \approx \frac{h}{2}(f_0 + 2f_1 + 2f_2 + ... + 2f_{n-1} + f_n)$$

Simpson's rule:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left(f_0 + 4f_1 + 2f_2 + 4f_3 + 2f_4 + \dots + 2f_{n-2} + 4f_{n-1} + f_n \right)$$

Newton's method to solve f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

6. The Gradient Vector

The directional derivative of f in the direction of the unit vector $\hat{\mathbf{u}}$ is $D_{\hat{\mathbf{u}}}f = \nabla f \cdot \hat{\mathbf{u}}$

$$\frac{df}{dt} = \vec{\nabla} f \cdot \frac{d\vec{\mathbf{r}}}{dt}, \quad \text{where} \quad \vec{\nabla} f = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}^{\mathrm{T}} \quad \text{and} \quad \frac{d\vec{\mathbf{r}}}{dt} = \begin{bmatrix} \frac{dx_1}{dt} & \frac{dx_2}{dt} & \cdots & \frac{dx_n}{dt} \end{bmatrix}^{\mathrm{T}}$$

Tangent plane to f(x, y, z) = c at $P(x_0, y_0, z_0)$ is $\vec{\mathbf{n}} \cdot \vec{\mathbf{r}} = \vec{\mathbf{n}} \cdot \vec{\mathbf{r}}_0$, where $\vec{\mathbf{n}} = \vec{\nabla} f|_{P}$.

If
$$\vec{\mathbf{v}}(x,y) = u(x,y)\hat{\mathbf{i}} + v(x,y)\hat{\mathbf{j}}$$
 and div $\vec{\mathbf{v}} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$, then the **stream function** $\psi(x,y)$ exists such that $\frac{\partial \psi}{\partial x} = v$ and $\frac{\partial \psi}{\partial y} = -u$. **Streamlines** are $\psi(x,y) = c$.
$$\vec{\nabla} \times \vec{\nabla} f = \text{curl grad } f = \vec{\mathbf{0}}$$

$$\vec{\nabla} \cdot \vec{\nabla} \times \vec{\mathbf{F}} = \text{div curl } \vec{\mathbf{F}} = 0$$

$$\vec{\nabla} (fg) = (\vec{\nabla} f)g + f(\vec{\nabla} g)$$
 Laplacian of $V = \nabla^2 V = \vec{\nabla} \cdot (\vec{\nabla} V) = \text{div grad } V$

7. <u>Conversions between Coordinate Systems</u>

To convert a vector expressed in Cartesian components $v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}} + v_z \hat{\mathbf{k}}$ into the equivalent vector expressed in <u>cylindrical polar coordinates</u> $v_\rho \hat{\boldsymbol{\rho}} + v_\phi \hat{\boldsymbol{\phi}} + v_z \hat{\mathbf{k}}$, express the Cartesian components v_x, v_y, v_z in terms of (ρ, ϕ, z) using $x = \rho \cos \phi$, $y = \rho \sin \phi$, z = z; then evaluate

$$\begin{bmatrix} v_{\rho} \\ v_{\phi} \\ v_{z} \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix}$$

Use the inverse matrix [= transpose] to transform back to Cartesian coordinates. To convert a vector expressed in Cartesian components $v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}} + v_z \hat{\mathbf{k}}$ into the equivalent vector expressed in **spherical polar** coordinates $v_r \hat{\mathbf{r}} + v_\theta \hat{\boldsymbol{\theta}} + v_\phi \hat{\boldsymbol{\phi}}$, express the Cartesian components v_x, v_y, v_z in terms of (r, θ, ϕ) using $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$; then evaluate

$$\begin{bmatrix} v_r \\ v_\theta \\ v_\phi \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

Use the inverse matrix [= transpose] to transform back to Cartesian coordinates.

Basis Vectors

Cylindrical Polar:

$$\frac{d}{dt}\hat{\boldsymbol{\rho}} = \frac{d\phi}{dt}\hat{\boldsymbol{\phi}}
\frac{d}{dt}\hat{\boldsymbol{\rho}} = -\frac{d\phi}{dt}\hat{\boldsymbol{\rho}}
\Rightarrow \vec{\mathbf{v}} = \dot{\boldsymbol{\rho}}\hat{\boldsymbol{\rho}} + \rho\dot{\boldsymbol{\phi}}\hat{\boldsymbol{\phi}} + \dot{z}\hat{\mathbf{k}}
\Rightarrow \frac{d}{dt}\hat{\mathbf{k}} = \vec{\mathbf{0}}$$

Spherical Polar:

$$\frac{d\hat{\mathbf{r}}}{dt} = \frac{d\theta}{dt}\hat{\boldsymbol{\theta}} + \sin\theta \frac{d\phi}{dt}\hat{\boldsymbol{\phi}}$$

$$\frac{d\hat{\boldsymbol{\theta}}}{dt} = -\frac{d\theta}{dt}\hat{\mathbf{r}} + \cos\theta \frac{d\phi}{dt}\hat{\boldsymbol{\phi}}$$

$$\frac{d\hat{\boldsymbol{\phi}}}{dt} = -\left(\sin\theta \hat{\mathbf{r}} + \cos\theta \hat{\boldsymbol{\theta}}\right)\frac{d\phi}{dt}$$

$$\mathbf{r} = r\hat{\mathbf{r}} \qquad \Rightarrow \quad \bar{\mathbf{v}} = \dot{r}\hat{\mathbf{r}} + r\dot{\theta}\hat{\boldsymbol{\theta}} + r\sin\theta\dot{\phi}\hat{\boldsymbol{\phi}}$$

Gradient operator in any orthonormal coordinate system

Gradient operator $\vec{\nabla} = \frac{\hat{\mathbf{e}}_1}{h_1} \frac{\partial}{\partial u_1} + \frac{\hat{\mathbf{e}}_2}{h_2} \frac{\partial}{\partial u_2} + \frac{\hat{\mathbf{e}}_3}{h_3} \frac{\partial}{\partial u_3}$

Gradient $\vec{\nabla}V = \frac{\hat{\mathbf{e}}_1}{h_1} \frac{\partial V}{\partial u_1} + \frac{\hat{\mathbf{e}}_2}{h_2} \frac{\partial V}{\partial u_2} + \frac{\hat{\mathbf{e}}_3}{h_3} \frac{\partial V}{\partial u_3}$

Divergence $\vec{\nabla} \bullet \vec{\mathbf{F}} = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial (h_2 h_3 f_1)}{\partial u_1} + \frac{\partial (h_3 h_1 f_2)}{\partial u_2} + \frac{\partial (h_1 h_2 f_3)}{\partial u_3} \right)$

Curl $\vec{\nabla} \times \vec{\mathbf{F}} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{\mathbf{e}}_1 & \frac{\partial}{\partial u_1} & h_1 f_1 \\ h_2 \hat{\mathbf{e}}_2 & \frac{\partial}{\partial u_2} & h_2 f_2 \\ h_3 \hat{\mathbf{e}}_3 & \frac{\partial}{\partial u_3} & h_3 f_3 \end{vmatrix}$

Laplacian $\nabla^{2}V = \frac{1}{h_{1} h_{2} h_{3}} \left(\frac{\partial}{\partial u_{1}} \left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial V}{\partial u_{1}} \right) + \frac{\partial}{\partial u_{2}} \left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial V}{\partial u_{2}} \right) + \frac{\partial}{\partial u_{3}} \left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial V}{\partial u_{3}} \right) \right)$

$$dV = h_1 h_2 h_3 \ du_1 du_2 du_3 = \left| \frac{\partial(x, y, z)}{\partial(u_1, u_2, u_3)} \right| du_1 du_2 du_3$$

$$= \left| \frac{\partial x}{\partial u_1} \frac{\partial x}{\partial u_2} \frac{\partial x}{\partial u_3} \right|$$

$$= \left| \frac{\partial y}{\partial u_1} \frac{\partial y}{\partial u_2} \frac{\partial y}{\partial u_3} \right| du_1 du_2 du_3$$

$$\frac{\partial z}{\partial u_1} \frac{\partial z}{\partial u_2} \frac{\partial z}{\partial u_3} du_3$$

Cartesian: $h_x = h_y = h_z = 1$

Cylindrical polar: $h_{\rho} = h_z = 1$, $h_{\phi} = \rho$

Spherical polar: $h_r = 1$, $h_{\theta} = r$, $h_{\phi} = r \sin \theta$

8. <u>Line Integrals</u> Work done by $\vec{\mathbf{F}}$ along curve C is $W = \int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_C \vec{\mathbf{F}} \cdot \frac{d\vec{\mathbf{r}}}{dt} dt$

The location $\langle \vec{\mathbf{r}} \rangle$ of the centre of mass of a wire is $\langle \vec{\mathbf{r}} \rangle = \frac{\vec{\mathbf{M}}}{m}$, where

$$\bar{\mathbf{M}} = \int_{t_0}^{t_1} \rho \,\bar{\mathbf{r}} \, \frac{ds}{dt} \, dt \,, \quad m = \int_{t_0}^{t_1} \rho \, \frac{ds}{dt} \, dt \quad \text{and} \quad \frac{ds}{dt} = \left| \frac{d\bar{\mathbf{r}}}{dt} \right| = \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2} \,.$$

If a potential function V for $\vec{\mathbf{F}}$ exists, then $W = \text{(potential difference)} = \left[V\right]_{\text{start}}^{\text{end}}$

Green's Theorem

For a simple closed curve C enclosing a finite region D of \mathbb{R}^2 and for any vector function $\vec{\mathbf{F}} = \begin{bmatrix} f_1 & f_2 \end{bmatrix}^T$ that is differentiable everywhere on C and everywhere in D,

$$\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \iint_D \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \right) dA$$

Path Independence

When a vector field \mathbf{F} is defined on a simply connected domain Ω , these statements are all equivalent (that is, **all** of them are true or all of them are false):

- $\vec{\mathbf{F}} = \vec{\nabla} \phi$ for some scalar field ϕ that is differentiable everywhere in Ω ;
- $\mathbf{\bar{F}}$ is conservative;
- $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ is path-independent (has the same value no matter which path within Ω

is chosen between the two endpoints, for any two endpoints in Ω);

- $\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \phi_{\text{end}} \phi_{\text{start}}$ (for any two endpoints in Ω);
- $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = 0$ for all closed curves C lying entirely in Ω ;
- $\frac{\partial f_2}{\partial x} = \frac{\partial f_1}{\partial y}$ everywhere in Ω ; and
- $\nabla \times \vec{\mathbf{F}} = \vec{\mathbf{0}}$ everywhere in Ω (so that the vector field $\vec{\mathbf{F}}$ is irrotational).

There must be no singularities anywhere in the domain Ω in order for the above set of equivalencies to be valid.

9. Surface Integrals - Projection Method

For surfaces
$$z = f(x, y)$$
, $\vec{\mathbf{N}} = \left[-\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} + 1 \right]^{\mathsf{T}}$ and
$$\iint_{S} g(\vec{\mathbf{r}}) dS = \iint_{D} g(\vec{\mathbf{r}}) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} dA \quad \text{(where } dA = dx \, dy \text{)}$$

Surface Integrals - Surface Method

With a coordinate grid
$$(u, v)$$
 on the surface S ,
$$\iint_{S} g(\vec{\mathbf{r}}) dS = \iint_{S} g(\vec{\mathbf{r}}) \left| \frac{\partial \vec{\mathbf{r}}}{\partial u} \times \frac{\partial \vec{\mathbf{r}}}{\partial v} \right| du dv$$

The total flux of a vector field $\overline{\mathbf{F}}$ through a surface S is

$$\Phi = \iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{S} \vec{\mathbf{F}} \cdot \hat{\mathbf{N}} \, dS = \iint_{S} \vec{\mathbf{F}} \cdot \frac{\partial \vec{\mathbf{r}}}{\partial u} \times \frac{\partial \vec{\mathbf{r}}}{\partial v} \, du \, dv$$

Some common parametric nets are listed on pages 9.19 and 9.20.

10. Theorems of Gauss and Stokes; Potential Functions

Gauss' divergence theorem: $\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iiint_{V} \vec{\nabla} \cdot \vec{\mathbf{F}} \ dV$ on a simply-connected domain.

Gauss' law for the net flux through any smooth simple closed surface S, in the presence

Stokes' theorem:
$$\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \iint_S \vec{\nabla} \times \vec{\mathbf{F}} \cdot \hat{\mathbf{N}} dS = \iint_S (\operatorname{curl} \vec{\mathbf{F}}) \cdot d\vec{\mathbf{S}}$$

On a simply-connected domain Ω the following statements are either all true or all false:

- \mathbf{F} is conservative.
- $\vec{\mathbf{F}} \equiv \vec{\nabla} \phi$
- $\vec{\nabla} \times \vec{F} \equiv \vec{0}$
- $\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \phi(P_{\text{end}}) \phi(P_{\text{start}})$ independent of the path between the two points.

 ϕ is the potential function for \mathbf{F} , so that $\begin{bmatrix} \frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} F_1 & F_2 & F_3 \end{bmatrix}^{\mathrm{T}}$.

11. <u>Major Classifications of Common PDEs</u>

$$A(x,y)\frac{\partial^2 u}{\partial x^2} + B(x,y)\frac{\partial^2 u}{\partial x \partial y} + C(x,y)\frac{\partial^2 u}{\partial y^2} = f\left(x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}\right)$$

$$D = B^2 - 4AC$$

Hyperbolic, wherever (x, y) is such that D > 0;

Parabolic, wherever (x, y) is such that D = 0;

Elliptic, wherever (x, y) is such that D < 0.

d'Alembert Solution

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} = r(x, y)$$

A.E.:
$$A\lambda^2 + B\lambda + C = 0$$

C.F.:
$$u_C(x, y) = f(y + \lambda_1 x) + g(y + \lambda_2 x)$$
, [except when $D = 0$]

where
$$\lambda_1 = \frac{-B - \sqrt{D}}{2A}$$
 and $\lambda_2 = \frac{-B + \sqrt{D}}{2A}$ and $D = B^2 - 4AC$

When
$$D = 0$$
, $u_C(x, y) = f(y + \lambda x) + h(x, y)g(y + \lambda x)$,

where h(x, y) is a linear function that is neither zero nor a multiple of $(y + \lambda x)$.

P.S.: if RHS = n^{th} order polynomial in x and y, then try an $(n+2)^{th}$ order polynomial.

12. The Wave Equation – Vibrating Finite String

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} \quad \text{for } 0 < x < L \quad \text{and} \quad t > 0 \quad \text{with} \quad y(0,t) = y(L,t) = 0 \quad \text{for } t \ge 0,$$

$$y(x,0) = f(x)$$
 for $0 \le x \le L$ and $\frac{\partial y}{\partial t}\Big|_{(x,0)} = g(x)$ for $0 \le x \le L$

Substitute y(x,t) = X(x)T(t) into the PDE. ... leads, via Fourier series, to

$$y(x,t) = \frac{2}{L} \sum_{n=1}^{\infty} \left(\int_{0}^{L} f(u) \sin\left(\frac{n\pi u}{L}\right) du \right) \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{n\pi ct}{L}\right)$$
$$+ \frac{2}{\pi c} \sum_{n=1}^{\infty} \frac{1}{n} \left(\int_{0}^{L} g(u) \sin\left(\frac{n\pi u}{L}\right) du \right) \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi ct}{L}\right)$$

The Heat Equation

If the temperature u(x,t) in a bar satisfies $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ together with the boundary conditions $u(0,t) = T_1$ and $u(L,t) = T_2$ and the initial condition u(x,0) = f(x), then

$$u(x,t) = X(x)T(t) \text{ ... leads to } u(x,t) = v(x,t) + \left(\frac{T_2 - T_1}{L}\right)x + T_1 \text{ where}$$

$$v(x,t) = \frac{2}{L} \sum_{n=1}^{\infty} \left(\int_{0}^{L} \left(f(z) - \frac{T_2 - T_1}{L}z - T_1\right) \sin\left(\frac{n\pi z}{L}\right) dz\right) \sin\left(\frac{n\pi x}{L}\right) \exp\left(-\frac{n^2 \pi^2 kt}{L^2}\right)$$

[Space for Additional Notes]