13.  Suggestions for the Formula Sheets

Below are some suggestions for many more formulae than can be placed easily on both
sides of the two standard 8'%2"x11" sheets of paper for the final examination. It is
strongly recommended that students compose their own formula sheets, to suit each
individual’s needs.

1. Parametric and Polar Curves

Distance r(t) = \F(t)\ = \/(X(t))2+(Y(t))2+(Z(t))2

Tosketch T(t) = x(t)i+y(t)]: Findall values of t atwhichany of x(t), y(t),
x'(t), y'(t) are zero, then construct a table for all four functions.

d dx )
Y _0and E0 = horizontal tangent
dt dt ) 5
@y =0 and o _ 0 = vertical tangent g
dt dt 0 x x
Polar coordinates: x=rcosé, y=rsing;, r>=x*+y’, tang =2

X

(r,6+2nz) and (—r, 49+(2n+1)7r) (neZ) are the same pointas (r,8).
Tosketch r=f(8), sketch Cartesian y=f(x) with y=r, x=@, then transfer onto

a polar sketch.
r(6,)=0and r'(6,)=0 = 6=6, isatangentat the pole.

2. Vectors

The component of vector 0 in the direction of vector v is u, = GsV = ucosé

—(TeV) = —<V + Oe and

dt dt dt

d, = _ du _ _ Y, _dao _dv
—(OxV) = —xV + Ux— = —Ux— + Ux—
dt dt d dt dt

The distance along a curve between two points whose parameter values are t, and t, is

b Y 2 2 2
- BTG
! dt dt dt

r ¢ dr
L = j ds = [ Lt = ‘—r
) i dt
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ﬁ 2
The distance along a polar curve r=f(6) is L = J. r’ +(g_;j a0
a

The unit tangent at any point on a curve is

4. dr |drj _dr
dt |dt ds
The unit principal normal at any point on a curve is
N = pd—T = d—T—d—T where p = radius of curvature _1
ds dt | dt K
The unit binormal is
B = TxN
L dr . dr ds -
Velocity is v(t) = —, speedisv(t) = |V(t)) = |—| = — and Vv =VvT
The acceleration [vector] is
dv  d*f d°x. d’y. d’z, . .
a(t) = — = I + k=aT+ a,N
(®) & df  ae o ae ) ar i "
A Ve ~ vxa
where a, = N ai = ¥ and a, = kv’ =, /a’-a’ = aN = [v>a]
dt v v

The surface of revolution of y = f (x) around y=c is (y—c)2 +z :(f (x)—c)2

b
The curved surface area from x=a to x=b is A= an | £ (x)—c|y1+(F'(x)) dx
a
. b dx
The area between a curve and the x axis is A= | | y(t) ‘E dt
ta

B
The area swept out by a polar curve (o <0< f<a+2rx) is A:%j r’de

[24
Components of velocity: V.. =F, Viwee=F0, Vy=V, V,=0
Components of acceleration:
. +\2 . - 1d . dv
Aogiat = I — r(e) v Aransverse =2f0+r0 :__(rZQ)’ ar =——, a4y :K\/Z = a2 _aT2
r dt dt
: . X=X - -1
Line parallel to [a b ¢ ] through (X, Y, 2,) is o - Y byo - o
c

(except where any of a, b, ¢ is zero)
Plane normal to [ A B C]' containing (X,,Y,,Z,) is Ax+ By + Cz+ D =0, where

D =—(Ax, + By, +Cz,)
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3. Multiple Integrals

xydA Ijgxfxydydx_j .[3// xydxdy

or” xydA jj r0rdrd0

Centre of mass: {7} = U ardAJ UjadAj or wprdv}wpdv]

Moment of inertia I Hy odA Iy = szadA, L=l +1y = HrzadA
Parallel axis theorem, second moment 1,, of mass m about axis y=y, a distance b
from the axis y =y through the centre of mass: 1,, =1, +mb?

4. Streamlines (lines of force)

Streamlinesto F=[ f, f, f,] are the solutions of % =kF

S
% = (i—y = % (exceptthat f, =0 = that component is constant).
1 2 3
5. Numerical Integration
[a,b] divided into n equal intervals. h _b-a
n

b
Trapezoidal rule: j f(x)dx ~ g(fo +2f +2f, + o+ 2f  + fy)
a
Simpson’s rule:
b h
J-a f(x)dx = g(f0+4f1+2f2+4f3+2f4 + o+ 2f , +Af + fn)
f (%)

f'(%n)

Newton’s method to solve f(Xx)=0: X,,; = X, —

6. The Gradient Vector

The directional derivative of f in the direction of the unit vector G is Dof = Vf.Q

- T B T
ﬂzﬁf.ﬁ, where ﬁf = ﬂﬂﬁ and ﬁz{%%%:l
dt 0%, 0X, OXq dt dt dt dt

Tangent planeto f(x,y,z)=c at P(X,,Y,,2,) is Nef = feF,, where i = ?f‘P
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ou ov

If v(x,y) = u(x,y)i + v(xy)]jand divv = 5+a_y = 0, then the stream function
w (X, y) exists such that Z—W:v and a—W_—u. Streamlines are y/(X,y) =
X oy
VxVf = curlgradf = 0
VsVxF = diveurl F = 0
V(fg )=(Vf)g+f(7 )
Laplacian of V = VAV = V+(VV) = divgrad V

7. Conversions between Coordinate Systems

To convert a vector expressed in Cartesian components vyi-+vyj+v,K into the

equivalent vector expressed in cylindrical polar coordinates v, p+ v¢¢ + VZR, express

the Cartesian components vy, vy, v, in terms of (p, o, z) using
X=pcos¢, y=psing, z=z; then evaluate

Vo cosg sing 0] vy
Vg | = —sing cos¢ O||vy

v, 0 0 1|y,

Use the inverse matrix [= transpose] to transform back to Cartesian coordinates.
To convert a vector expressed in Cartesian components vyi-+vyj+v,K into the

equivalent vector expressed in spherical polar coordinates v, +V,6 +V ¢¢ , express the

Cartesian components Vy, Vy, V, in terms of (r,9,¢) using
X =rsin@cosg, y =rsin@dsing, z =rcosé; thenevaluate

Vp singcosg sin@sing cosf || vy
Vg | =|cos@cosg cos@sing —sind ||vy
Vy —sing COoS ¢ 0 v,

Use the inverse matrix [= transpose] to transform back to Cartesian coordinates.
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Basis Vectors

Cylindrical Polar:

d . dg, r=pp+zk
dtp dt e
d, dg, V=pp+pdd+ik
a-.__4do = V= + + 2Kk
dt¢ =5 PP+ PP
9% -0
dt
Spherical Polar:
ar _ 99, sined%
dt dt dt
d_e:_d_e? +cos¢9%¢3
dt dt dt
d_¢:—(sin9f’+coseé)%
dt dt
r=rf = V=>(Ft+rf@+rsindgg

Gradient operator in any orthonormal coordinate system

Gradient operator V = & 9 + & 0 + & 0
hyou h,ou, h ou,
Gradient §V=iﬂ+é_2ﬂ+é_3ﬂ
hou, h,ou, h ou
Divergence VeF = 1 o(h, h3f1)+a(h3 hif2)+6(h1 h,f,)
h h, h, ou, au, au,
0
e, — f
he oo h
Curl er: = hlhlh hzéz ai hz f2
23 u2
A 0
h, &, a_ua h, f,

Loplacian v = 1 [ﬁ(hzw}ﬁ[mﬂ}i[@ﬂn
h b, hy o,
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a(x,y,2)

dV = h1h2h3 duldUZdU3 = ‘ duldUZdUB
o(uy,uy,uz)
X x
ou, ou, Ou,
= ﬂ ﬂ ﬂ dulduzdu3
ou, ou, ou,
a2 o e
ou, ou, Ou,
Cartesian: hy=hy =h, =1
Cylindrical polar: h,=h, =1, h¢ =p
Spherical polar: he =1, hg =r, h¢ =rsin@

8. Line Integrals Work done by F along curve C is W :Iﬁ-di’ = Iﬁi: at
c C

The location (F) of the centre of mass of a wire is (F) = %

( j ( T [dz jz

dt dt )
_ d
If a potential function V for F exists, then W = (potential difference) =[V ]E:an

b Y
M = pf‘ﬁdt, m:J. ﬁdt and ds _
, dt t dt dt

Green’s Theorem

For asimple closed curve C enclosing a finite region D of R? and for any vector function
= [ f, f " that is differentiable everywhere on C and everywhere in D,

fre =H( 5
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Path Independence
When a vector field F is defined on a simply connected domain Q, these statements are
all equivalent (that is, all of them are true or all of them are false):

= F=Vg¢ forsome scalar field ¢ that is differentiable everywhere in Q;
= F isconservative;
. jlf-dF is path-independent (has the same value no matter which path within Q

is chosen between the two endpoints, for any two endpoints in Q);
. jlf-dl" = Gend — Psare (FOr any two endpoints in Q);
C

. (j}l—:-df = 0 for all closed curves C lying entirely in Q;

c
. 9, _of everywhere in Q; and
ox oy

= VxF = 0 everywhere in Q (so that the vector field F is irrotational).

There must be no singularities anywhere in the domain Q in order for the above set of
equivalencies to be valid.

9. Surface Integrals - Projection Method
of o !

For surfaces z=f(x,y), N=|-— —-— +1| and
oX oy

Hg F)dS = ” (r \/(az] +(2—;) +1 dA  (where dA=dxdy)

Surface Integrals - Surface Method

ar or

With a coordinate grid (u, v) on the surface S, J.J.g r)ds = '” —><— du dv

The total flux of a vector field F through a surface S is

® = ”Fds— jFNds_”F.arxﬂd udv

Some common parametric nets are listed on pages 9.19 and 9.20.
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10. Theorems of Gauss and Stokes; Potential Functions

Gauss’ divergence theorem: <ﬁ> FedS = J j V-F dV on asimply-connected domain.
S \%

Gauss’ law for the net flux through any smooth simple closed surface S, in the presence

g if S encloses O

of a point charge q, is: <J;B EedS = | ¢
S 0 otherwise

Stokes’ theorem: (j}r:-d? = J.J.VXIE-N as = ”‘(curl ﬁ)-dé
C S $

On a simply-connected domain Q the following statements are either all true or all false:
* F isconservative.

* F=Vyg

= VxF=0

. jg-drf = ¢(P,y) — #(P..) - independent of the path between the two points.
C

= $Fdr =0 vCcQ
C

;
¢ is the potential function for F, so that 9 99 09| _ [FRF R
oX 0y 0%

11. Major Classifications of Common PDEs

o°u o°u o°u ou du
A [} - 5 B ] C ’ - = f s Yo Ty T
(x y)8x2 * Blx y)ax oy * Clx y)ay2 (X Yo 8yj

D = B2-4AC

Hyperbolic, wherever (x, y) is such that D > 0;
Parabolic, wherever (x, y) is such that D = 0;
Elliptic, wherever (x, y) is such that D < 0.
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d’Alembert Solution

o%u o%u o%u

A— + B + C = r(x
ox? ox 0y oy? (xy)
AE.: AV +BA+C =0
C.F. Ue (% y) = f(y+4x) + g(y+4,x), [exceptwhen D = 0]
where A = -8-Vb and A, = -8+VD and D = B*-4AC
2A 2A

When D=0, uc(xy) = f(y+Ax)+h(x,y)g(y+1x),
where h(x,y) is a linear function that is neither zero nor a multiple of (y + Ax).
P.S.: if RHS = n™ order polynomial in x and y, then try an (n+2)™ order polynomial.

12. The Wave Equation — Vibrating Finite String

o’y , 0%y .
¥=c pya for 0<x<L and t>0 with y(0,t)=y(L,t)=0 for t>0,

y(x,0)=f(x) for 0<x<L and %

=g(x) for 0<x<L
(9

Substitute y(x,t)=X(x)T(t) intothe PDE. ... leads, via Fourier series, to

y(xt) = %;:UOLf(u)sin(%)du]sin(ntxjcos(n”LCt)
+ %ni:l%u‘:g(U)Si”(%deJsin(nLijsin(n”—ftj

The Heat Equation

2
If the temperature u(x,t) in a bar satisfies (Z—l: =k % together with the boundary
X

conditions u(0,t)=T, and u(L,t)=T, and the initial condition u(x,0)= f (x), then

u(x,t)=X(x)T(t) .. leadsto u(x,t) = v(xt) + (Tz—ETl)x + T, where

v(xt) = %ni:‘l[.‘.ol_(f (2) - TZ[Tl z - lesin(n—fzjdz}sin(nil_xjexp[— nzf:ktj
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[Space for Additional Notes]
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