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2.
Surface Integrals
This chapter introduces the theorems of Green, Gauss and Stokes.   Two different methods of integrating a function of two variables over a curved surface are developed.

The sections in this chapter are:

2.1   
Line Integrals

2.2   
Green’s Theorem

2.3   
Path Independence

2.4   
Surface Integrals - Projection Method

2.5   
Surface Integrals - Surface Method

2.6   
Theorems of Gauss and Stokes; Potential Functions

2.1   
Line Integrals
Two applications of line integrals are treated here:  the evaluation of work done on a particle as it travels along a curve in the presence of a [vector field] force; and the evaluation of the location of the centre of mass of a wire.

Work done:  

The work done by a force  F  in moving an elementary distance  (r  along a curve C is approximately the product of the component of the force in the direction of (r and the distance | (r | travelled: 
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Integrating along the curve C  yields the total work done by the force F in moving along the curve C: 
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Example 2.1.1  

Find the work done by 
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 in moving around the curve C (defined in parametric form by   x = cos t ,  y = sin t ,  z = 0 ,  0 ( t ( 2( ).

Example 2.1.1  (continued)

Example 2.1.2 

Find the work done by 
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 in moving around the curve C (defined in parametric form by   x = cos t ,  y = sin t ,  z = 0 ,  0 ( t ( 2( ).

If the initial and terminal points of a curve C  are identical and the curve meets itself nowhere else, then the curve is said to be a simple closed curve. 

Notation: 

When C is a simple closed curve, write 
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F  is a conservative vector field if and only if  
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  for all simple closed curves C  in the domain.

Be careful of where the endpoints are and of the order in which they appear (the orientation of the curve).   The identity 
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 leads to the result 
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( simple closed curves  C
Another Application of Line Integrals: 
The Mass of a Wire 

Let  C  be a segment  (t0 ( t ( t1)  of wire of line density  ( (x, y, z).   Then 
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First moments about the coordinate planes:

The location 
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 of the centre of mass of the wire is 
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Example 2.1.3 

Find the mass and centre of mass of a wire C (described in parametric form by 

x = cos t ,   y = sin t ,  z = t ,    (( ( t ( ( )  of line density   ( = z2 .

Let  c = cos t ,   s = sin t .   






Example 2.1.3   (continued)

2.2   
Green’s Theorem
Some definitions: 

A curve  C  on (2 (defined in parametric form by 
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 a ( t ( b) is closed iff 
(x(a), y(a))  =  (x(b), y(b)) .

The curve is simple iff   
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  for all t1, t2 such that   a <  t1 <  t2 <  b ; 

(that is, the curve neither touches nor intersects itself, except possibly at the end points).

Example 2.2.1  

Two simple curves: 



       
open




closed
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Two non-simple curves:



       
open




closed
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Orientation of closed curves:

A closed curve C  has a positive orientation iff a point  r(t)  moves around C  in an anticlockwise sense as the value of the parameter t increases.

Example 2.2.2 
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          Positive orientation

       Negative orientation

Let  D  be the finite region of (2 bounded by C.    When a particle moves along a curve with positive orientation, D is always to the left of the particle.

For a simple closed curve C enclosing a finite region D of (2 and for any vector function 
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 that is differentiable everywhere on C and everywhere in D, 

Green’s theorem is valid: 
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The region D is entirely in the xy-plane, so that the unit normal vector everywhere on D is k.   Let the differential vector  dA = dA k , then Green’s theorem can also be written as 
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Green’s theorem is valid if there are no singularities in D.

Example 2.2.3  
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Example 2.2.4 

For 
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 and C as shown, evaluate 
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Example 2.2.4   (continued)
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Example 2.2.4   (continued)

OR
use Green’s theorem!
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Example 2.2.5 

Find the work done by the force 
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 in one circuit of the unit square.
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2.3   
Path Independence
Gradient Vector Fields:  

If  
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Path Independence  

If  
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, then  (  is a potential function for F.

Let the path C travel from point Po to point P1: 

Domain  

A region ( of 
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 is a domain if and only if

1)
For all points Po in (, there exists a circle, centre Po, all of whose interior points are inside (; and

2)
For all points Po and P1 in (, there exists a piecewise smooth curve C, entirely in (, from Po to P1.

Example 2.3.1

Are these domains?



     { (x, y) | y > 0 }


     { (x, y) | x ( 0 }
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If a domain is not specified, then, by default, it is assumed to be all of (2.

When a vector field F is defined on a simply connected domain (, these statements are all equivalent (that is, all of them are true or all of them are false):

· 
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   for some scalar field (  that is differentiable everywhere in (;

· F  is conservative;

· 
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 is path-independent (has the same value no matter which path within ( is chosen between the two endpoints, for any two endpoints in ();

· 
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 (for any two endpoints in ();

· 
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 for all closed curves C lying entirely in (;

· 
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 everywhere in (; and

· 
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 everywhere in ( (so that the vector field F is irrotational).

There must be no singularities anywhere in the domain ( in order for the above set of equivalencies to be valid.

Example 2.3.2 

Evaluate 
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 where C  is any piecewise-smooth curve from (0, 0) to (1, 2).

Example 2.3.3 (A Counterexample)

Evaluate 
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, where 
[image: image43.wmf]2222

,

yx

xyxy

-

=

++

F

v

 and C is the unit circle, centre at the origin.

Example 2.3.3    (continued)
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