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2.4   
Surface Integrals - Projection Method
Surfaces in (3 

In (3 a surface can be represented by a vector parametric equation 


[image: image119.png]



where  u, v  are parameters.

Example 2.4.1 

The unit sphere, centre O, can be represented by 
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If every vertical line (parallel to the z-axis) in (3 meets the surface no more than once, then the surface can also be parameterized as 
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Example 2.4.2 
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   is a 
A simple surface does not cross itself.   

If the following condition is true:  

{
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 for all pairs of points in the domain}

then the surface is simple.   

The converse of this statement is not true.   

This condition is sufficient, but it is not necessary for a surface to be simple.

The condition may fail on a simple surface at coordinate singularities.   For example, one of the angular parameters of the polar coordinate systems is undefined everywhere on the z-axis, so that spherical polar (2, 0, 0) and (2, 0, () both represent the same Cartesian point (0, 0, 2).   Yet a sphere remains simple at its z-intercepts.
Tangent and Normal Vectors to Surfaces 

A surface S is represented by r(u, v).   Examine the neighbourhood of a point Po at 

r(uo, vo).   Hold parameter v constant at vo (its value at Po) and allow the other parameter u to vary.   This generates a slice through the two-dimensional surface, namely a one-dimensional curve Cu containing Po and represented by a vector parametric equation 
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 with only one freely-varying parameter (u).
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If, instead, u is held constant at uo and v is allowed to vary, we obtain a different slice containing Po, the curve 
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On each curve a unique tangent vector can be defined.
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At all points along Cu, a tangent vector is defined by 
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[Note that this is not necessarily a unit tangent vector.]

At Po the tangent vector becomes 
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Similarly, along the other curve Cv, the tangent vector at Po is 
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If the two tangent vectors are not parallel and neither of these tangent vectors is the zero vector, then they define the orientation of tangent plane to the surface at Po.
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A normal vector to the tangent plane is 
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Cartesian parameters 

With   u = x,    v = y,     z = f (x, y) , the components of the normal vector 
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   are:
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(
a normal vector to the surface   z  =  f (x, y)  at  (xo, yo, zo)  is 
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If the normal vector N is continuous and non-zero over all of the surface S, then the surface is said to be smooth.

Example 2.4.3 

A sphere is smooth. 

A cube is 
A cone is 
Surface Integrals (Projection Method) 

This method is suitable mostly for surfaces which can be expressed easily in the Cartesian form  z = f (x, y). 

The plane region  D  is the projection of the surface S : f (r) = c  onto a plane (usually the xy-plane) in a 1:1 manner.
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The plane containing D has a constant unit normal 
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 is any non-zero normal vector to the surface S.
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For  z = f (x, y)  and  D = a region of the xy-plane, 



[image: image24.wmf]ˆ

ˆ

,,1and

zz

xy

¶¶

=--=

¶¶

Nnk

v



[image: image25.wmf]ˆ

1and

Þ=

Nn

v

g



[image: image26.wmf](

)

(

)

22

1

S

D

zz

gdSgdA

xy

æöæö

¶¶

=++

ç÷ç÷

¶¶

èøèø

òò

òò

rr

vv


which is the projection method of integration of g(x, y, z) over the surface z = f (x, y) .

Advantage: 


Disadvantage: 

Example 2.4.4 

Evaluate 
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, where the surface S is the section of the cone  z2 = x2 + y2  in the first octant, between z = 2 and z = 4.
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Example 2.4.4   (continued)

2.5
Surface Integrals - Surface Method
When a surface  S  is defined in a vector parametric form  r = r(u, v), one can lay a coordinate grid (u, v) down on the surface S.

A normal vector everywhere on S is 
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Advantage: 


(   only one integral to evaluate

Disadvantage: 


(   it is often difficult to find optimal parameters  (u, v).

The total flux of a vector field 
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 through a surface S is
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(which involves the scalar triple product 
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Example 2.5.1: (same as Example 2.4.4, but using the surface method).

Evaluate 
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, where the surface S is the section of the cone  z2 = x2 + y2  in the first octant, between z = 2 and z = 4.
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Choose a convenient parametric net: 

Just as we used line integrals to find the mass and centre of mass of [one dimensional] wires, so we can use surface integrals to find the mass and centre of mass of [two dimensional] sheets.

Example 2.5.2 

Find the centre of mass of the part of the unit sphere (of constant surface density) that lies in the first octant.
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Example 2.5.2    (continued)

Example 2.5.3 

Find the flux of the field 
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xyz

=-

F

v

 across that part of  x + 2y + z = 8  that lies in the first octant.
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Example 2.5.3   (continued)
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Example 2.5.4   

Find the total flux ( of the vector field 
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 through the simple closed surface S
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Use the parametric grid 
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This grid is a generalisation of the spherical polar coordinate grid and covers the entire surface of the ellipsoid for 
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One can verify that 
[image: image40.wmf]sincos,sinsin,cos

xaybzc

qfqfq

===

 does lie on the ellipsoid 
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for all values of 
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The tangent vectors along the coordinate curves 
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 = constant and ( = constant are

Example 2.5.4   (continued)

For vector fields   F(r), 

Line integral:
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Surface integral:
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On a closed surface, take the sign such that 
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 points outward. 

Some Common Parametric Nets 

1) 
The circular plate
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 in the plane z = zo. 


Let the parameters be  r, (  where   0  <  r  (  a ,   0  (  (  <  2( 


x  =  xo  +  r cos ( ,
y  =  yo  +  r sin ( ,
z  =  zo  
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2) 
The circular cylinder
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 with zo  (  z  (  z1 . 


Let the parameters be  z, (  where zo  (  z  (  z1 ,  0  (  (  <  2(  


x  =  a cos ( ,
y  =  a sin ( ,
z  =  z  
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Outward normal:  
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3) 
The frustrum of the circular cone 
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Let the parameters here be r, (   where 
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Outward normal:  
[image: image61.wmf]ˆˆ

ˆ

cossin

ararr

qq

=+-

Nijk

v


4)
The portion of the elliptic paraboloid
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Let the parameters here be r, (   where 
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x  =  xo + r cos ( ,
y  =  yo + r sin ( ,
z  =  zo +  r2 (a2 cos2(  + b2 sin2()  
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Outward normal:  
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5) 
The surface of the sphere  
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Let the parameters here be  (, (   where 
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x = xo + a sin ( cos ( ,    y = yo + a sin ( sin ( ,    z  =  zo + a cos ( 
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Outward normal:  
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6) 
The part of the plane  
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 in the first octant with A, B, C > 0   and   Axo+ Byo+ Czo > 0.

            Let the parameters be x, y   where 
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2.6   
Theorems of Gauss and Stokes; Potential Functions
Gauss’ Divergence Theorem 

Let  S  be a piecewise-smooth closed surface enclosing a volume  V  in (3 and let  F  be a vector field.   Then 

the net flux of  F  out of  V  is 
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But the divergence of  F  is a flux density, or an “outflow per unit volume” at a point.

Integrating  div F  over the entire enclosed volume must match the net flux out through the boundary S of the volume V.    Gauss’ divergence theorem then follows: 
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Example 2.6.1
  (Example 2.5.4 repeated)     

Find the total flux ( of the vector field 
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 through the simple closed surface S
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Use Gauss’ Divergence Theorem: 
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 is differentiable everywhere in 
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3, so Gauss’ divergence theorem is valid.

Example 2.6.2

Archimedes’ Principle  

Gauss’ divergence theorem may be used to derive Archimedes’ principle for the buoyant force on a body totally immersed in a fluid of constant density ( (independent of depth).  Examine an elementary section of the surface S of the immersed body, at a depth  z < 0 below the surface of the fluid: 
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The pressure at any depth  z  is the weight of fluid per unit area from the column of fluid above that area.   Therefore

pressure  =  p  =  



The normal vector 
[image: image81.wmf]N
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 to S is directed outward, but the hydrostatic force on the surface (due to the pressure p) acts inward.   The element of hydrostatic force on (S  is 

The element of buoyant force on (S is the component of the hydrostatic force in the direction of k (vertically upwards): 

Define  
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Summing over all such elements (S, the total buoyant force on the immersed object is 

Example 2.6.2
  Archimedes’ Principle  (continued)

Therefore the total buoyant force on an object fully immersed in a fluid equals the weight of the fluid displaced by the immersed object (Archimedes’ principle).

Gauss’ Law  

A point charge  q  at the origin O  generates an electric field 
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If  S  is a smooth simple closed surface not enclosing the charge, then the total flux through S is 

If  S  does enclose the charge, then one cannot use Gauss’ divergence theorem, because 

Remedy: 

Construct a surface S1 identical to S except for a small hole cut where a narrow tube T connects it to another surface S2, a sphere of radius a centre O and entirely inside S.    Let 
[image: image85.wmf]*
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 (which is a simple closed surface), then  

[image: image117.png]


 

Gauss’ Law  (continued)

Gauss’ Law  (continued)

Gauss’ law for the net flux through any smooth simple closed surface S, in the presence of a point charge q at the origin, then follows:
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Example 2.6.3   Poisson’s Equation 

The exact location of the enclosed charge is immaterial, provided it is somewhere inside the volume V enclosed by the surface S.   The charge therefore does not need to be a concentrated point charge, but can be spread out within the enclosed volume V.    Let the charge density be   ( (x, y, z), then the total charge enclosed by S is 

Stokes’ Theorem 

Let F be a vector field acting parallel to the xy-plane.   Represent its Cartesian components by  
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Green’s theorem can then be expressed in the form 
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Now let us twist the simple closed curve C and its enclosed surface out of the xy-plane, so that the normal vector k is replaced by a more general normal vector N.

If the surface S (that is bounded in (3 by the simple closed curve C) can be represented by   z  =  f (x, y), then a normal vector at any point on S is 

C is oriented coherently with respect to S if, as one travels along C with N pointing from one’s feet to one’s head, S is always on one’s left side.   The resulting generalization of Green’s theorem is Stokes’ theorem: 
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This can be extended further, to a non-flat surface S with a non-constant normal vector N.

Example 2.6.4 

Find the circulation of 
[image: image91.wmf],,
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 around C : the unit square in the xz-plane.
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Example 2.6.4   (continued)

Domain  

A region ( of (3 is a domain if and only if

1)
For all points Po in (, there exists a sphere, centre Po, all of whose interior points are inside (; and

2)
For all points Po and P1 in (, there exists a piecewise smooth curve C, entirely in (, from Po to P1.

A domain is simply connected if it “has no holes”.

Example 2.6.5

Are these regions simply-connected domains?

The interior of a sphere.


The interior of a torus.


The first octant.



On a simply-connected domain the following statements are either all true or all false: 

· F  is conservative. 

· F  (  ((  

· ((F  (  0  

· 
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-   independent of the path between the two points.

· 
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Example 2.6.6 

Find a potential function ( (x, y, z)  for the vector field 
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First, check that a potential function exists at all:
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Example 2.6.6    (continued)

Maxwell’s Equations   (not examinable in this course)

We have seen how Gauss’ and Stokes’ theorems have led to Poisson’s equation, relating the electric intensity vector  E  to the electric charge density ( : 
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Where the permittivity is constant, the corresponding equation for the electrical flux density  D  is one of Maxwell’s equations:   
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Another of Maxwell’s equations follows from the absence of isolated magnetic charges (no magnetic monopoles):  
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, where H is the magnetic intensity and B is the magnetic flux density.

Faraday’s law, connecting electric intensity with the rate of change of magnetic flux density, is   
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.   Applying Stokes’ theorem to the left side produces 
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Ampère’s circuital law, 
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, leads to  
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, where 

the current density is  
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,  
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 is the conductivity, 
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 is the volume charge density; and the displacement charge density is  
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The fourth Maxwell equation is 


[image: image108.wmf]t

¶

Ñ´=+

¶

D

HJ

v

vv


The four Maxwell’s equations together allow the derivation of the equations of propagating electromagnetic waves.

END OF CHAPTER 2
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