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3.
Fourier Series    

This short chapter offers a very brief review of [discrete] Fourier series.

The Fourier series of  f (x) on the interval (–L, L) is
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where
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and
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The {an, bn} are the Fourier coefficients of f (x).

Note that the cosine functions (and the function 1) are even, while the sine functions are odd.   

If  f (x)  is even (f (–x) =  + f (x)  for all x), then bn = 0  for all n, leaving a Fourier cosine series (and perhaps a constant term) only for  f (x).

If  f (x)  is odd (f (–x) =  – f (x)  for all x), then an = 0  for all n, leaving a Fourier sine series only for  f (x).

Example 3.1  

Expand 
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 in a Fourier series.
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Example 3.1    (Additional Notes – also see 




"www.engr.mun.ca/~ggeorge/5432/demos/")

The first few partial sums in the Fourier series 


[image: image5.wmf](

)

(

)

(

)

2

1

11

1

cossin

4

n

n

fxnxnxx

nn

p

pp

p

=

¥

æö

--

=++-<<+

ç÷

ç÷

èø

å


are 
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and so on.

The graphs of successive partial sums approach  f (x)  more closely, except in the vicinity of any discontinuities, (where a systematic overshoot occurs, the Gibbs phenomenon).
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Example 3.2   

Find the Fourier series expansion for the standard square wave, 
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The graphs of the third and ninth partial sums (containing two and five non-zero terms respectively) are displayed here, together with the exact form for  f (x), with a periodic extension beyond the interval (–1, +1) that is appropriate for the square wave.
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y  =  S3(x)

Example 3.2   (continued)

y  =  S9(x)
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Convergence  

At all points x = xo in (–L, L) where  f (x)  is continuous and is either differentiable or the limits 
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 both exist, the Fourier series converges to f (x).

At finite discontinuities, (where the limits 
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 both exist), the Fourier series converges to 
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(using the abbreviations 
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f (x) not continuous      continuous but       continuous and



      at x = xo               not differentiable      differentiable    

In all cases, the Fourier series at x = xo converges to 
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 (the red dot).

Half-Range Fourier Series

A Fourier series for  f (x), valid on [0, L], may be constructed by extension of the domain to [–L, L].

An odd extension leads to a Fourier sine series: 
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where
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An even extension leads to a Fourier cosine series: 
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where
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and there is automatic continuity of the Fourier cosine series at x = 0 and at x = ( L.

Example 3.3   

Find the Fourier sine series and the Fourier cosine series for  f (x) = x  on [0, 1].

f (x) = x  happens to be an odd function of x for any domain centred on x = 0.   The odd extension of  f (x)  to the interval  [–1, 1]  is  f (x)  itself.

Evaluating the Fourier sine coefficients, 

This function happens to be continuous and differentiable at x = 0, but is clearly discontinuous at the endpoints of the interval (x = (1).

Fifth order partial sum of the Fourier sine series for  f (x) = x  on [0, 1]
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Example 3.3   (continued)

The even extension of  f (x)  to the interval  [–1, 1]  is  f (x) = | x |.

Evaluating the Fourier cosine coefficients, 

Example 3.3   (continued)

Third order partial sum of the Fourier cosine series for  f (x) = x  on [0, 1]
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Note how rapid the convergence is for the cosine series compared to the sine series.

S3(x) for cosine series and S5(x) for sine series for  f (x) = x  on [0, 1]
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END OF CHAPTER 3
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