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1. Vector Fields and the Gradient Operator

In this chapter, a review of vectors from previous courses is followed by the introduction
of lines of force. The gradient operator is extended to divergence, curl and Laplacian in
both Cartesian and general orthonormal curvilinear coordinate systems. Conversion of
components of vectors between Cartesian and other coordinate systems is also covered.

Contents of this Chapter:

1.1  Review of Vectors

1.2 Lines of Force

1.3 The Gradient Vector

1.4  Divergence and Curl

1.5  Conversions between Coordinate Systems

1.6 Basis Vectors in Other Coordinate Systems

1.7  Gradient Operator in Other Coordinate Systems
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1.1 Review of Vectors

This first section is a brief review of concepts that were introduced during terms 1 and 2.

The displacement vector of a particle can be represented in Cartesian components by

F(t) = (x(1), y(1). 2(1))

where t is a parameter (time or angle or distance along a curve, etc.)

The distance of the particle from the origin at any value of t is given by the scalar
function

Note the various alternative conventions for a vector and its magnitude:
r=r=r and r=|r|=]r|

=13

Scalar product (dot product):

UsV = uvcoséd

The component of vector U
in the direction of vector v is ey —=

=

Uev=0 = 0=0o0orv=0oraolv ("0 atrightanglesto v")
The scalar product is commutative:

Vel = UV vu,v

=l

Vector product (cross product):

The vector product of two vectors U, Vv isin
adirection n at right angles to both 0 and v. &

=

-

axVv = (uvsing)h
The area of the parallelogram is

A =|uoxv| and h =using = |uxY¥]
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The orientation of the plane containing vectors 0 and v is defined by the direction of the
vector product 0 = UxV.

Uxv=0 = 0u=0o0r v=0or a||Vv ("0 parallel to v")
The vector product is anti-commutative:

xV = Uxv=0

<

vxu = —

The product rule of differentiation is valid for scalar and vector products:

i(U-\7) = dlfl. U-dv and

dt dt dt

d, du _ Y _du dv
—(OxV) = —xV + Ux— = —Ux— + Ox—
dt d dt dt
Example 1.1.1

For the vectors 0 = (4,3,2) and v = (2,-1,-2)
find Oev, u,, UxV, @ (=the angle between 0 and v)
and the equation of the plane parallel to G and v that passes through the origin.

u=|d|=+16+9+4 = 29
v=|v|=+4+1+4 =3

UV = 4(2)+3(-1)+2(-2) = i

. O 1
uV = UeV = = -
Vo3
i j kK
Uxv =|4 3 2|=(-4,12-10) = -2(2,-6,5)
2 -1 -2 A
c0sg =3V _ 1 00619 = 6 ~865°
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Example 1.1.1 (continued)

A normal to the plane is i = (2, -8,
A point on the plane is a = (0, 0, 0)
The equation of the plane is Fen = a-n = 2x-6y+5z=0

5)

= a-n = 0.

The arc length s is the distance travelled along the curve. It is related to the
displacement vector r by

ds _|dr

dt dt
The distance along a curve between two points whose parameter values are toand t; is

9] 9] 9] 2 2 2
L = ds = Edt= %-Fﬂ +% dt
dt dt dt dt

L% L% ty

A unit vector 0 has a magnitude of 1. |0 |=1
Any non-zero vector r can be decomposed into its magnitude r and its direction:

r=rf, wherer =|r|>0
The unit tangent at any point on the curve is
L
dt

dr
dt

_dar
ds
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The unit principal normal at any point on the curve is
- dT  dT [dT
N = p— = — = |—
ds dt | dt
where p = radius of curvature (SI units: metre)
k = curvature (Sl units: m™)

and ,o:l
K

Of all circles that touch a curve on the “inside” at a particular point (and which therefore
all share the same unit tangent vector [or its negative] there), the one whose radius is p
is the best fit to that curve at that point. In general, curvature varies along most curves.

At points of inflexion, k=0

The unit binormal is

B = TxN
The three vectors form an orthonormal set (they are mutually perpendicular and each
one is a unit vector; that is, magnitude = 1)

B = constant —
the curve lies entirely in one plane (the plane defined by T and N ).

Note that N and B are undefined at points of inflexion.
All three unit vectors are undefined where the curve suddenly reverses direction,
(such as at a cusp).
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Velocity and Acceleration

If the parameter t is the time, then the velocity of a particle [a vector function] is

dar
o) = 4°F
v(t) = 4
and its speed [a scalar function] is
- dar ds
V(t) = ‘V(t)‘ E = E

and

The acceleration [vector] is
O 22 2 2 2
a(t) = dv _ d’r :<dx d?y dz>=aTT+aNN

dt dt? dt> ' dt? ' dt?
where
T = ﬂ = ao-’l\_ = vea
dt Y
and
~ Vxa
a, = kv =, /a’-a’ = aN = [v3]
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Example 1.1.2
The equation of a curve in R® is given parametrically by
r = elsinti - ] + el costk

Find \‘/,a,v,aT,aN,K,'T',RI,@.
Show that the curve lies entirely in one plane and find the equation of that plane.

Let c=cost and s=sint then T = <ets, -1 etc>

= V= % = <et(s+c), 0, et(c—s)>

= et\/(s+c)2+02+(c—s)2 = e'yJs?+2sc+c? + c2—2sc+s’

= v
oov=e2
F-V_ £<s+c,0,c—s>
Vv 2
a= ? = et<(s+c+c—s),O,(c—s—s—c)> = 2¢'(c,0,-s)
_dv_dt R
Todt dt(eﬁ)_i
OR
a = VB _af - o {c, O,—s)-\/z<s+c, 0,c-s)

2
= etx/z((sc+c2)+0+(—cs+sz)) = i
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Example 1.1.2 (continued)

a, = a’-a? = et\/4(c2+(—s)2)—2 —elVa-2 = e'\2
OR
o i)k
a, = [9x3] _ 1] gy e'(s+c) 0 e'(c—s)
v v ¢ ¢
2ec 0 -2e's
1 2t (.2 2 ‘_292t_t
= V‘<O,2e (c CS+S +sc),0> = et\/E = ex/i
t
:a_g: e' V2 \/_—t :p:lzetﬁ
v ( t\/_) 2 K
OR evaluate k¥ from
| |
v
ar _ ﬁ{c—s,O,—s—c)
dt 2
aT) _ ﬁ\/CZ—ZCS+SZ+SZ+ZSC+C2 = @ =1
dt 2 2
— N = dT. aT| _ ﬁ{c—s,O,—s—c)
dt dt 2
OR
a=afraN = N-= ai( a.T)
— eth[Zet<c,O,— ) - ( \/—)§<S+C,O,C—S>J = %{20—s—c,0,—23—c+s>
- N = Q(c—s,O,—s—c)
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Example 1.1.2 (continued)

~

2 i ] k
B = TxN = (QJ det| s+c 0 c-s
2
c-s 0 —(s+c)
1 1
_ E<0,(cz—203+32+32+2sc+cz),0> = §<O’ 2,0)
- ]
=N a8 _ 0 = 7=0
ds

where 7 is the torsion (the measure of the rate at which the curve is twisting out of the
plane defined by T and N).

~

7 =0 = the curve lies in one plane, with plane normal n=B =]j.

A point on the curve can be found by setting the parameter t = 0:
r(0) = (0,-1,1) = "a"

The equation of the plane containing the curve is

Aef =na = Ox+1y+0z = 0(0)+1(-1)+0(1)

= y=-1

Frenet-Serret formulee:

1. d—T = K|/\\|
ds
o IN_ 5 _ 7
ds
98B _ N
ds

The proofs are in Problem Set 1.
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1.2 Lines of Force

A vector function of n variables in R" is a vector field.

Fix,y,2) = (fux,y,2), fa(x, Y, 2), fa(x,y,2))

(and the f; form scalar fields).

The domain must be defined. If not explicitly mentioned, the domain is assumed to be
all of that part of R" for which all of the scalar fields f; are defined.

A vector field defines a vector F at each point in the domain.
If these vectors are tangents to a family of curves, then those curves are
streamlines or flow lines or lines of force.

Let F(x,Y, z) beavector field to a family of lines of force r(x,y, z). Then

T=—1|F = — =kF(s)

L I A
ds ds ds
S (kds=) (XU _d
fl f2 f3

(provided fi, f,, f3 are all non-zero).

[flzo = %z = X=constant, etc.}
S
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Example 1.2.1

Find the lines of force associated with the vector field F = <ez, 0, - x2>
and find the line of force that passes through the point (4, 2, 0).

N dar - dar

| = o (s)
%:kez, ﬂ:O, g:—kx2 = y=A and
ds ds ds
kds:g—;(:% = —x%dx = e’dz

X3
=N —J.xzdx:J.eZdz =3 —?-FB:EZ
= 7= In(B—%x3)
The lines of force are therefore
r(x,y,z) = <x, A, In(B—%x3)>

We want the line of force through (4, 2, 0)
64)\ _ _ 64 _ o0 _
= (4AN(B-%)) = (420 = A-2and B-%-e"-1

— 64 _ 67
= B—1+3—3

The required line of force is

- fan{ o)

(for x < 367 only)
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Example 1.2.2

Find the lines of force associated with the vector field F = <x2, 2y, —1>
and find the line of force that passes through the point (-1, 6, 2).

dr _ B = <dx dy dz> _ k<x2,2y,—1>

ds ds’ ds’ ds
dx. dy dz
kds = — = — = — x Z0 and 0
= e 2y - (x# y #0)
1 - -1 1
dz = —dx = —d dz = | —dx = | —d
- x? 2yy jj x? 2y
1
z==+¢ and z =-1In c
= X+ A sIny + ¢,
= X = L and Iny = -2z - 2c,
z—-C,

But the required line of force passes through (-1, 6, 2):

C

<2_1 ,cge—4,2> = (-1,6,2) = ¢ =2+1=3, c,=6¢"

= T = <L3 et 22, z> (z=3)
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Example 1.2.3
Find the streamlines associated with the velocity field v = < Z_y =1 X > 0>
X“+y" X +y

and find the streamline through the point (1, 0, 0).

kg o (EI Gy X
ds ds ds ds X“+y" X4y

2 2 2 2
9 0 and kds = XY gy - XY gy
ds X -y

=

z=B.
Provided (x,y)#(0,0), —ydy = xdx = —Jydy=jxdx

- - =_4C = X4y =A

The streamlines are therefore a family of circles, parallel to the x-y plane, centre the
z-axis, lying on a concentric set of circular cylinders:

X*+y*=A*, z=B or |":<x,4_r AZ—XZ,B>

(x,y,2)=(1,0,0) = 1°+0°=A*>, 0=B
The required streamline is therefore the unit circle

X*+y*=1, z=0
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1.3 The Gradient Vector

If a curve in R? is represented by y =f (x) , then

y=71x)
Dix+Ax, v+ A0
By
Pix, ¥
Mz
Y _ i _im f(x+Ax)— f(x)
dx Q—P AX AX—0 AX

If a surface in R® is represented by z =f(x,y), then in aslice y = constant,

Dix+hx, v, z4+42)

Mz
P(x,», z)
M
0 _ i f(x+AX,y, 2+Az)-f(xy,2)
OX T A0 AX
Similarly,
oz lim f(x, y+Ay, z+Az)-f(x,Y,2)
6y - Ay—0 Ay
In the plane of the independent variables:
Q) f(P) = f
. f(Q) = f+df
dr dy dr = (dx, dy, 0)
P T Chain rule:

dt _afdx afdy
dt ox dt Oy dt
of of

df = —dx + —dy
0X oy
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of of _
df = (—, «(dx, dy) = Vfedr
<8x 8y>< y)

where Vf (pronounced as “del ) is the gradient vector.

At any point (x, y) in the domain, the value of the function f (X, y) changes at different
rates when one moves in different directions on the xy-plane.

VT is a vector in the plane of the independent variables (the xy-plane).

The magnitude of Vf at a point (x, y) is the maximum instantaneous rate of increase of f
at that point. The direction of Vf at that point is the direction in which one would have
to start moving on the xy-plane in order to experience that maximum rate of increase,
(which is also at right angles to the contour f (x, y) = constant at that point).

Points where Vf =0 are critical points of f, (maximum, minimum or saddle point).

The directional derivative of f in the direction of the unit vector G is
D,f = Vf.l
Both vectors are in the plane of the independent variables.

The directional derivative is the component of Vf in the direction of Q.

Vi D,f = Wf“ﬁ|cos&’

ﬁ‘n i = max(DGf) = Wf ‘ when O || Vf

and min‘Daf‘ =0 when 0O L Vf
(when @ is tangential to the contours of f).

The results above can be extended to functions of more than two variables.
For the hypersurface z = f (X1, Xa, ..., Xn) in R™?, the chain rule becomes

ﬂzvf.ﬁ’ where Vf = ﬂ’ﬂ'...’ﬂ and ﬁz %'%’...'%
dt dt 0%, 0%, 0X, dt dt = dt dt
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Example 1.3.1

The electrostatic potential ¢ at a point P(x, y, z) in R® due to a point charge Q at the

origin is
¢ = LQ where r = (x*+y*+12°.

Cdze v
Find the rate of change of ¢ at the point (1, 2, 2) in the direction k —2i .
Find the maximum value of the directional derivative over all directions at any point.
Find the level surfaces.

g2 o 9 &.iﬁﬂ
Adrze 1 OX dze dr\r ) ox
or 0

T
But o0 = 00y /IN

x oy z

= %(x2+y2+22) %(x2+y2+22)

= ir‘1(2x+0+0) S
2 r

% _ Q x_ -x

ox  dmer? r  Azer®
This is the x component of the gradient vector.

Obtain % o9 by symmetry.
oy 0z

At(1,2,2) r = V12422427 =9 = 3,

o _ _ Q
= Vi = 22

0-k-21 = 0=-2(201

5

__ 9 ,
- D0¢‘P B 47rg><27<1’ % 2>

= Dy, = 0

1

5

(-2,0,1) = ﬁ@(—z) +2(0)+2(1))
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Example 1.3.1 (continued)
+|Q

Arer® Arey

mx(0,9) = | -

This occurs when
all - 0
+F (Q<0)

Level surfaces (contours):

Q ¢ o =9
Adrey 4rsC

But r=A isa sphere, centre O.

p=c =

Therefore the level surfaces are a family of concentric spheres.

[Q >0 case]
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Change of coordinates:

Suppose z =1 (x,y) (where (X, y) are Cartesian coordinates) and % is wanted, (where

(r, &) are plane polar coordinates). Then
/' N\
X ¥
N

oz _ 020x  0z0y
or oxor oyor

But x=rcosd, y =rsind

Q = Qcos@ + 6_5"“9

or oX oy
0z _ 0z

—(-rsing) + 2(rcosr9) can be found in a similar way.
00 ox oy
In matrix form, the chain rule can be expressed concisely as
oz] [ox aylfaz
or or or || ox

oz |~ |ox ay|lez
66| |66 o6 |oy

Note that

o oy]
o(x.y) = abs| det oror is the Jacobian
o(r,0) ox oy

00 00

For the transformation from Cartesian to plane polar coordinates in R?, the Jacobian is
o(x,y) || cos@ sin@

o(r,0) ~|[-rsin® rcos@
Integrals over areas can therefore be transformed using the Jacobian:

” xydxdy—jj xy drdr9 ”gr@rdrd&

where f(x,y) = g(r, 60 at all points in the area A of integration.
We shall return to this topic later.

= ‘rcoszéhrrsinzﬁ‘ =r
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Planes

Let n = anormal vector to a plane = (A, B, C)
and  r, = the position vector of a point on the plane = (Xo, Yo, Zo)
where A, B, C, Xo, Yo, Zo are all constants.

Let r = the position vector of a general pointin R® = (x, y, z)
Then the point (X, y, z) is on the plane if and only if
NeT = Nef,

which is a vector equation of the plane.
Evaluating the scalar [dot] products generates the Cartesian equation of the plane:
Ax+ By +Cz=D

where D = Ax, + By, + Cz,.

Lines

Let v = avector parallel to the line = (vy, v, v3)
and  r, = the position vector of a point on the line = (Xo, Yo, Zo)
then the vector parametric form of the equation of the line is

r =" +tv
and the Cartesian equivalent, (in the case where none of vy, v, V3 IS zero) is
X=X _ Y=Yy _ Z-1,

Vl V2 VS
Surfaces
The general Cartesian equation of a surface in R is of the form
f(x,y,2)=c

At every point on the surface where Vf exists as a non-zero vector, Vf is orthogonal
(perpendicular) to the level surface of the function f that passes through that point.
Therefore, at every point on the surface f (x,y, z) = ¢,

the gradient vector Vf is normal to the tangent plane.

The tangent plane at the point P(Xo, Yo, Zo) to the surface f (x, y, z) = ¢ has the equation

AeF = RNef., where n = WP

0
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Example 1.3.2

Find the Cartesian equations of the tangent plane and normal line to the surface
z = x> +y atthe point (-1, 1, 2).

The implicit form of the equation of the surfaceis f = x*+y—-z = 0
Vi = (2x,1,-1)

= Vi, =(-21-1) =n

ner, = -2(-1)+1(1)-1(2) =1

Therefore the equation of the tangent planeis -2x+y-z = 1 or

2X—-y+7z+1 =0

The equation of the normal line follows immediately:
In vector parametric form: ¥ = (-1,1,2) + t(-2,1,-1)
or, in Cartesian parametric form, X =-1-2t, y=1+t, z =2-t

x+1 y-1 z-2

or, in Cartesian symmetric form,
-2 1 -1

or
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Example 1.3.3

Find the angle between the surfaces x*+y?+2z* = 4 and z°+x* = 2 at the point

(1, V2, 1).

First note that these surfaces are a sphere, radius 2, centre the origin and a circular
cylinder of radius ~/2 aligned along the y axis. Their intersection will therefore be a
pair of parallel circles, equally spaced on either side of the x-z plane.

The point P (1, v/2, 1) s clearly on both surfaces [satisfies the equations of both
surfaces].

f=x+y*+2° =4 = Vf =(2x2y,2z) = 2(x,y,z) = 2n,

ALP, A, = (12,1)

g=x"+2"=2 = Vg =(2x0,2z) = 2(x,0,2) = 2n,

At P, n, = (1,0,1)

The angle 8 between the surfaces equals the angle between the two normal vectors.

n, =+v1+2+1 =2
n, = V1+0+1 = 2
A,en, 2

= 0= % (45

o1

Note: In the event that n,+n, < 0, then the two normal vectors meet at an obtuse angle
(they are pointing in approximately opposite directions). In that case use | n,en, | .
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Gradient Operator

For three independent variables (x, y, z), the gradient operator is the “vector”
voidyj ikl (222
ox "oy 0z oX 0y 01z

It operates on anything immediately to its right; either a scalar function or scalar field, or,
via a dot product or cross product, on a vector function or vector field.
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1.4 Divergence and Curl

For an elementary area AA in a vector field F, F i
—
A is an outward unit normal to the surface. /

AA is sufficiently small that F = (fy, f,, f3) is
approximately constant over AA.

Area=~AA0

The element of flux A¢ from the vector field through AA is approximately

Ag ~ FeAAA
Now add up the elements of flux passing through the six faces of an elementary cuboid of
sides Ax, Ay, Az, volume AV = Ax Ay Az and with one corner at (X, Y, ).

ﬂ:ﬁ/ T

i Mz

l

The front face is at (x + Ax) and the back face is at (x).

- My .

Back face: A, = —i
P —
AA = Ay-Az ng n
- r:'ﬁB = I_jo<—,|\) = — fl(x’ y’z) Y x+ix X

= Agy = —f(X,y,2)-Ay-Az

Front face: Ng = +Ii

= FeA, = Fei = f.(x+Ax,y,z) [frontfaceisat x + Ax]

= Ag = + f(X+AX,Y,2)-Ay-Az
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Divergence (continued)

Ag+Agy  F(x+Axy,2)- (X Y,2)

AV AX

AV —0 AV OX

mn(A%+A%j:5ﬁ

Similarly, for the left and right faces,

lim
AV —0

(Aq +A¢Rj _ of,
AV oy

and for the top and bottom faces,

Adrop + Ao — 0 f3
AV 0z

lim
AV =0

Summing over all six faces of the cuboid, the net rate of flux per unit volume out of a
point (X, Y, z) is

dv OX oy 0z

lim (A_¢j _ d¢ _ of, N of, N of,
AV -0 AV

= Ve(f,, f,, f,) = VoF
which is the divergence of F.

No net flux (no sources) = divF =0
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Example 1.4.1
Find the divergence of the vector F, giventhat F = V¢, ¢ = 4Q .
nE

r=x>+y*+2%.

From example 1.3.1,

= -Q = +Q
Vo = r = F=-Vg¢ = r
¢ Azer® Azer®
o divE - (02 9 a\/x ¥ Z
dre \OX 0y 0z/ \r> r°r

Also from example 1.3.1, or _ 5, or _ X, o _z
OX r oy r oz r

3 2 X
5 (Xj ) 1r° - x(3r 'rj r(r2 _ 3x2) 23yl

ox\ rd r® r6 r’

The other two derivatives follow by symmetry.

= divF =

° Arer®

dre r
(unless r =0, where div F is undefined).

Q (rz—sx2 + r?-3y* + r2—322} Q(3r2—3r2)

Therefore the ideal electrostatic field is source free except at the point charge itself.
The flux passing in through any volume not enclosing the charge is balanced by the flux
passing out.
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Streamlines for Fluid Flow

Let v(r) be the velocity at any point (x, y, z) in an incompressible fluid. Because the
fluid is incompressible, the flow in to any region must be matched by the flow out from
that region (except when the region includes a source or a sink). This generates the
continuity equation

divv=0

Let us take the case of fluid flow parallel to the x-y plane everywhere, so that we can
ignore the third dimension and consider the flow in two dimensions only. Then

A

v=v(xY) = u(x, y)f + V(X Y)]

The continuity equation then becomes

8u+6v_0

divv = Vev =| — + — =
ox oy

The fluid flows along streamlines, but never across any streamline.
Consider the flow through a small region bounded partly by a streamline:

streamline
4 T = VAX=UAy = vdx —udy =0
i
—
¥ ~ f This ODE is exact if and only if
0 0 ou ov
—(Vv) = —(-u = —+—=0

which is automatically true (equation of continuity).

The solution to the ODE is then the stream function y (X, y), where

6_W=V and 6_V/=_u

OX oy
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Example 1.4.2 (Example 1.2.3 repeated)

-y

Find the streamlines associated with the velocity field v = <

and find the streamline through the point (1, 0).

X2+y2’x2+y2>

u= )
x2+y2 x2+y2

Verify that the equation of continuity is satisfied:

- 0u ov 0 -y
Ve = —+— = —
ox 0y  ox\x*+y? 8y X2 +y°

o) R o ) B v(x y)#(0,0)

(x2+y2)2 (x +y )2

Therefore the stream function y (X, y) exists, such that

a_W:VZ 2X 7 and a_W:_u:%
0X X“+y oy X“+y
= p(xy) =3n(x*+y’)=C = x+y’ = = A

Therefore the streamlines in the x-y plane are
X2 + y2 — AZ

(x,y)=(L0) = 21°+0°=A
The required streamline is therefore the unit circle

X +y*=1
— ‘v

The flow is a vortex around the origin. &

N
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Divergence (a scalar quantity):

divF = V+F
Curl (a vector quantity):
i ] k
curlF = vxF=det| & 2 2 |_ 6F3_6F2'6F1_8F3’8F2_6F1
ox ady oz oy 0z dz ox ' ox ay
FF F, F

curl F=0everywhere = F is an irrotational vector field.

Example 1.4.3

Find curl F for F = (cosy, -sinx, 0) .
Also find the lines of force for the vector field F.

ik

VxF =| — 2 91 (0-0,0-0,-cosx +siny)
oX oy 0z
cosy -sinx O

» =o

= curlF = (siny—cosx)R

Lines of force:
ar _ g - <% dy £>:k<cosy,—sinx,0>

ds ds’ds’ ds
g:o and kds = dx = o!y
ds cosy  —sinx

= z=B and j—sinxdx:jcosydy

The lines of force are therefore
siny = A + cosx, z=B

Inorderto be real, -=2< A<?2

It then follows that curl F = A k and is constant along any one line of force.
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Example 1.4.3 (continued)

Direction field plot for the vector field F = (cosy, —sinx,0):
¥

- SRR I
ol Y ] i L
vy ", vy N
e " O NN

v B P
Py M, VAV VA NN
fl L Y A ‘e VoA
VLN e fi/_ by T ]
R e N
e AL
SN Y D s NN~
NN e S S e NN N s e S
Vo I S i
f LRI E A A L
vy Mo e S N,
L NN e S AN
L SN e S N
vy SN NG S S NN,
!!ff{}\‘n*n"a\' f A
R A A A e Voo A

curl F = (siny —cos x) k
Lines of force: siny = A +cosx (-2 <A<2)

and curlF = Ak .

Along the highlighted lines (at 45° angles), A = 0 (and therefore curl F = 0).
Where those lines cross, F = 0 also, (in additionto A=0 and curl F =0).

Half way along the lines between those intersections, | F | is at a maximum (+/2).
At the highlighted dots, | curl F | achieves its maximum value of 2 and F =0 and
where the lines of force near a dot are in an anticlockwise direction, curl F = +2 k;
where the lines of force near a dot are in a clockwise direction, curl F = -2 k.
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All differentiable gradient-vector fields are irrotational:

curlgrad¢ = VxVg =0

Proof:
i ]k
_ o o 0 B,
curlF = VxVg = i 8_y 27| <¢zy_¢yza¢xz_¢zx,¢yx_¢xy> =0
o 09 99
ox 0y 0z
Also:
divcurl F = VeVxF =0
Proof:
_ f,
Let F =(f, f,f) and f, == etc., then

- = = o 0 0
V.VxF = <5'8_y'5>.< fay = Tars Ty = fa0 fou = f1y>

(5t D= S ) -

The Laplacian of a twice-differentiable scalar field ¢ is:

2 2 2
divgrad g = (2, 2 9 \(9¢ b O zaf+a¢;+5f5v2¢
ox 0y 0z \ox 0y 0z ox" oy° oz

Laplace’s equation is

2 2 2
V2¢Ea(/j+a(/z+af20
ox® o0y° oz
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Some Vector ldentities

f = curlgrad f

x 0
.VxF = diveurlF

0

< <

Laplacianof V = V& = V-(VV) = divgrad V

V2F = V(V-F) - Vx(VxF) = graddivF — curlcurl F

V(fg) = fvg + (Vf)g
9.(oF) - (vO)-F + of7-F)
div(gF) = (grad g)eF + gdivF
?x(glf) = (@ )><IE + g(@xlf)
curl (g F) = (grad g)xF + gcurl F
V-(FxG) = (VxF)-G - F-(VxG)
div (F x G) = (curl F)eG — Fe(curl G)

Vx(FxG) = (G-VJF - (F-V)G + (V-G)F - (V-F)G,

0

+ (Flﬁ + FZ& + oG

OX oy z
sothat (F-V) is the operator Fli + in + ng
OX oy 0z

. (Flaez . F, G, F, aezjj
OX oy z

VF-G) = (G-V)F + (F-V)G + Gx(VxF) + Fx(VxG)




ENGI 5432 1.5 Conversions between Coordinate Systems Page 1-32

15 Conversions between Coordinate Systems

In general, the conversion of a vector F=F,i+ Fyj+ Fk from Cartesian coordinates

(x, y, z) to another orthonormal coordinate system (u, v, w) in R*® (where “orthonormal”
means that the new basis vectors a,,a,, a,, are mutually orthogonal and of unit length) is

givenby F=Fi+Fj+Fk=Fa, + R4, +FA4,.

However, F, = F+d, = (in+ F,i+ FZR).éu = (i.au)FX +(j.au)|:y +(|2.éu)Fz.

Fy and F, are defined similarly in terms of the Cartesian components Fy, Fy, F;.
In matrix form

F ieq, Jja, keay F,
F, | = |ia, ja, ke, y
Fy i4a, ja, ke,|lF

The matrices on the right hand side of the equation will contain a mixture of expressions
in the new (u,v,w) andold (x,y,z) coordinates. This needs to be converted into a
set of expressions in (u, v, w) only.

Example 1.5.1

Express the vector F = yi — xj + zk incylindrical polar coordinates.

Xy plane: coordinates Xy plane: basis vectors
¢
Ya YA
F F
Jal B
o
¥ . /
Kk
¢ 0] 9
0 x g" O—» "=
i
= X = pCoS¢ ?-,b=‘?-[;|cos¢:cos¢
y = psing ]-,b = 1x1xcos(%—¢) = sing

A

Z =1 Kep = 1x1xcosZ = 0
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Example 1.5.1 (continued)

f-qz = Ix1x cos(%+¢) = —sing ** ik =0
]¢? = 1x1xCcos¢ = cos¢ ]-R =0
keg = 1xlxcosZ = 0 kek =1

The coefficient conversion matrix from Cartesian to cylindrical polar is therefore

cosg sing O
—sing cos¢g O
0 0 1
Letting ¢ = cos ¢, s =sing: F = yi—x]+zl§ :psf—pc]+zlz
c s 0] ps (cps—spc+0) 0
Fow =| S C 0 —pc | =|(-sps—cpc+0)|=|-p
0 01 z (0+0+72) z

Therefore
F=yi-xj+zk = —pg+1zk

** This result can be obtained from the trigonometric identity
cos(A+B) = cosAcosB — sinAsinB

Setting A=% and B=¢,

2
cos(5+¢) = cosFcosg — singsing = 0 — Lxsing
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We can also generate the coordinate transformation matrix from Cartesian coordinates
(x,y,2) tospherical polar coordinates (r, &, ¢).
[ is the declination (angle down from the north pole, 0<# <) and

¢ is the azimuth (angle around the equatorO < ¢ < 27).]

[Vertical] Plane containing z-axis and radial vector r :

z
A -~
k ~
----------------------- .
] 8, Z = rcosd
< rsinf =
T N:H . : .
FNG L The projection of the radial vector F=rr
: g
z S onto the plane z =r cos @ has length
r cos 4 A rsin 0
; S )
C L - The angle between r and k is &
@, xy plane = kef = cos@

The angle between  and K is Z+0

— ke = cos(%+9) — —sind

[Horizontal] Plane z=rcos 6 :
The projection of r onto the x axis (i)
is x=(rsin@)cos¢ = (rf)-f

~

= isF =sin& cosg

= (rsin@cosg, rsingsing, rcosd) .

The projection of rt onto the y axis (])
is y=(rsin@)sing = (rf)-]

— jf=sinfsing

The angle between 43 and ] 7 = ] CoS ¢
= ig=c

= os(%+¢) = —sing

The remaining three entries in the coordinate conversion matrix can be found in a similar
way.

’
-

The angle between ¢3 and i is S+¢
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The conversion matrix from Cartesian to spherical polar coordinates is then

ief jeP kef sindcosg sindsing cosd
ied jed kef| = |cosOcosg cos@sing —sind
ieg jep keg —sing cos ¢ 0

Example 1.5.2

Convert F = yf— x] to spherical polar coordinates.

Let c, =cosd, s =sind, c,=cos¢, S,=sing

= y=rss,, —X=-ISC,
F | [sc ss, ¢ rss,
F=|F,|=|cc cs, - || -Isc,
F, | -s, ¢ O 0
rs’(C,S, —S,C,) 0
= | -rsc(c,8,-5,6,) | =| O
rs,(-s,”-c,’) —rs;
Therefore

F=—rsindg

Expressions for the gradient, divergence, curl and Laplacian operators in any orthonormal
coordinate system will follow in section 1.7.
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Summary for Coordinate Conversion:

To convert a vector expressed in Cartesian components v,i+v,j+v,k into the

equivalent vector expressed in cylindrical polar coordinates vp[) +V,@+V,K, express

the Cartesian components vy, vy, v; in terms of (p,¢,2) using
X = pcos¢, Yy = psing, z = z; thenevaluate

v [ cosg sing 0O][v,
Vy | =|-sing cosg OV
0 0 1jlv,

Use the inverse matrix to transform back to Cartesian coordinates:
cos¢g —sing Of|v

vy | =|sing cosg 0|V,

0 0 1|y,

To convert a vector expressed in Cartesian components v,i+v,j+v,K into the

equivalent vector expressed in spherical polar coordinates v, F +Vv,0 + V@, express the

Cartesian components Vy, Vy, V, in terms of (r,9,¢) using
X =rsin@dcosg, y=rsindsing, z =rcosd; thenevaluate

v, singcosg sin@dsing coséd || v,
Vy | = |cos@cosg cosdsing —sind || v,
vy —sing CoS ¢ 0 v,

Use the inverse matrix to transform back to Cartesian coordinates:

v, singd cos¢ cos@dcosg —sing ||V,
V, | =|sin@sing cosdsing cosg ||V,
v, cosd —-siné 0 7

Note that, in both cases, the transformation matrix A is orthogonal, so that A™ = AT,
This is generally true for transformations between orthonormal coordinate systems.
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1.6 Basis Vectors in Other Coordinate Systems

In the Cartesian coordinate system, all three basis vectors are absolute constants:

diy_95_9¢ 5
dt dt dt
The derivative of a vector is then straightforward to calculate:
d/, = A - ~df,  ~df ~ df
—(fi+ f,j+ f.k)=i—=2>+j—2%+ k=
dt< ' S ) a1 ae dt

But many non-Cartesian basis vectors are not constant.

Cylindrical Polar:

;1; p =Ccosgi+sing]

Ja -~ P ¢?:—sin¢f+cos¢]

s
)
@\

)

Il

)

(2

5B
il

04&3 X cos @
i |
ds f
. \Y A . i\ 5 AN ;7
Let v = E then p = (—sm¢¢)| + (cos¢¢)] =¢¢ ;

A

§ = (-cosg )i+ (-singg)i=-4p

k=0

Therefore if a vector F is described in cylindrical polar coordinates
F=Fp+F¢+Fk, then

F = (Fp+Fd8)+ (Fd-Fip) + (Fk+0)

=(F, -F¢)p + (F, + Fp¢5)¢3 + (F, )k




ENGI 5432 1.6 Basis Vectors in Other Coordinate Systems Page 1-38

In particular, the displacement vector is F(t) = p(t)p + 06 + z(t)IQ, so that the
velocity vector is

—dr _dp.  dg. dz.
V=—=—"—p+ p—¢ + —Kk
gt a? TP’ T

Example 1.6.1

Find the velocity and acceleration in cylindrical polar coordinates for a particle travelling
along the helix x=3cos2t, y=3sin2t,z=t.

Cylindrical polar coordinates: x=pcos¢, y=psing, z=z

= p?=x*+y?, tang=2
X

p? =9c0s?2t+9sin?2t=9 = p=3 = p=0

tan¢:33|n2t =tan2t = ¢=2t = $=2
3cos 2t
z=t = 7=1
dr A n

= v=a=05+3x2¢3+112 = 6p+k

[The velocity has no radial component — the helix remains the same distance from the
z axis at all times.]

[The acceleration vector points directly at the z axis at all times.]
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Spherical Polar Coordinates

Vertical plane containing z-axis and radial vector r:

=z
A - R . R
.............................. k ¢ r =sindcosgi + sindsing j + cosd k
= rsmf = '9
T :
PN
rcosi e A
0 e
rypane g cos@ cosgi + cos@sing j — sindk
Equatorial plane (6 =0):
[sin@ p is the projection of F onto the equatorial
AT R plane.]
¢ sndp

¢3 = —sin¢i + cos(/ﬁ]

[This reproduces the three rows of the coordinate conversion matrix in section 1.5.]

ar = (cosH%cow - sianin¢d—¢jf
dt dt dt

+ cosed—esinqﬁ + sinecos¢%]] +[—sing 92k
dt dt dt
= E = d_ee’\ + S|n9%&
dt dt dt
dé = (—sined—gcos(ﬁ - cosesin¢d—¢ji
t dt dt

+ (—sin@ﬁsinqﬁ + cosé cos¢%j] + (—cos@d—ejﬁ
dt dt dt

a9 _ —%f - cost—¢¢3
dt dt dt
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Spherical Polar Coordinates (continued)

dg ( _dg): (. dg)s
E_[ coS ¢ dtjl+( sing dtjj

But sin@f+cosd 8 =sin®0cosgi + sin?@singj + sindcosd k
+ cos’Ocosgi + cos?Osing j — sin@cosdk

= cosgi + singj

= d¢ = —(sin9F+coseé)d—¢
dt dt

In particular, the displacement vector is ¥ = rr, so that the velocity vector is

Y =£=£F+ rd—rzﬁf +r d—967+ sined—¢¢?
dt dt dt dt dt dt

:ﬁf + r%—f& + rsiné ¢¢

dt

<

=

It can be shown that the acceleration vector in the spherical polar coordinate system is

- 2 2 2
a = av _ d—zr—r (d_&j +(%j sin’é | |f
dt dt dt dt
2
+ 1d (r d@) (%j sin26 |9
T dt dt 2\ dt
+ L ( d¢sm 0) ¢
rsin@ dt dt
d’x- d?y- dzzR!

Compare this to the Cartesian equivalent a = pre i+ j+ e

>

dt?
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Example 1.6.2

Find the velocity vector v for a particle whose displacement vector r, in spherical polar
coordinates, isgivenby r=4, =t, ¢ =2t, (0<t<n).

r=4, 6=t, g=2t = L_o ¥, B_,
dt dt dt
V= gf - rd—HG - rS|n6’d¢¢3
dt dt dt

= OF + 4x16 + 4(sint)x2¢

v(t) = 46 + 8sintg

[This describes a path spiralling around a sphere of radius 4, from pole to pole.]

Summary:

Cylindrical Polar:
d . d¢- N N ~
—p =— r= +zk
a? "t rP
i&—_d_‘ = V=pp+php+18,
dt a” pp+p
450
dt

Spherical Polar:
ar _ 995 sing ¢¢3
dt dt
a9 _ —d—ef + cosé —¢¢3
dt dt dt

a4 _ —(sin@?+cos€ é)i—f

r=rfr = V=Ir+ r60+rsm9¢¢
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1.7 Gradient Operator in Other Coordinate Systems

For any orthogonal curvilinear coordinate system (us, Uy, Us) in R®,

. - N 1 or
the unit tangent vectors along the curvilinear axesare €, = Ti = h—g—,
i ui
or
where the scale factors h, = 0l
ui

The displacement vector T can then be written as T = u€; + U,€, + U3€5, Where
the unit vectors &; form an orthonormal basis for R,

[0ij is the “Kronecker delta”.]

The differential displacement vector dr is (by the Chain Rule)
. or or or
dr = —du, + —du, + —
ou, ou, ou,
and the differential arc length ds is

ds? = dredf = (hdy,)* + (h,du,)’ + (h,du,)

du, = hdué, + h,du,&, + h,du,é,
2

The element of volume dV is

dV = hyhyhy dugdu,du; = a(‘z(x’u y’i)) du,du,du,
1,Uz,U3
ox oy oz
ou; Ou;  Oug
= 8X ay 82 duldUZdU3
aUZ 8U2 8U2
ox oy oz
Oouz 0Ouz Oug

Gradient operator V=21 L3
h ou, h,ou, h,ou,
Gradient vV _&N N &V
h ou  h,ou, h;ou
Divergence VeF = 1 o(h, h3f1)+8(h3hlf2)+8(h1 h, ;)
h h, h, ou, ou, ou,
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Curl VxF = —
hhh, | ou, ou, ou,

hl fl hZ fZ h3 f3

Laplacian v = —~ | 9 hhov) & (hhov) 0 fhh oV
ou h ou ) ou,{ h, ou, ) ou,( hy ou,

Cartesian: hy =hy =h, =1.
Cylindrical polar: h,=h,=1, h;=p.

Spherical polar: hy =1, hy=r, hy=rsing.

The familiar expressions then follow for the Cartesian coordinate system.

In cylindrical polar coordinates, naming the three basis vectors as p, ¢3 k, we have:

T = p,b+0¢?+ 7k = <p,0,z>
The relationship to the Cartesian coordinate system is

X=pCosg, y=psing, z=z = p?=x+y?, tang ==

X <

One scale factor is

- 2] (2) ()

ap

(] o] )

— Jeos?p+sin?¢+0 =1

h p—

e

In a similar way, we can confirmthat h, = o and h, =1.
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In cylindrical polar coordinates,

dvV = h,h,h, dpdgdz = pdpdgdz

ds? = (h,dp) + (n,dg) + (h,dz)’ = (dp)’ + (pdg) + (dz)’

1 [o(pxif,) . o(1x1f,) L Axpt,)
1x px1 op o¢p 0z

p réd k

VxF-_1 (2 2 2
Ixpx1|0p 0O¢ oz

f, pf, f,

o :i[i(pxlﬂ]+i(1x1ﬂ)+2(1xpﬂn

plop\ 1 Op) 09\ p 09 ) o0z\ 1 oz
oV 1oV 10V oV

So gt Tt T
op pop p° 0P 0z

All of the above are undefined on the z-axis (o = 0), where there is a coordinate
singularity. However, by taking the limit as p — 0, we may obtain well-defined values

for some or all of the above expressions.
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Example 1.7.1

Given that the gradient operator in a general curvilinear coordinate system is

V =

J
VR
D>
=
(S))
>
E
>

+ 2 + € 0 , why isn’t the divergence of
hyou  h,ou, h,ou,

F = Fé + F,é, + F,&, equal, in general, to li+££+i% ?
hyou,  h,ou, h,ou,

The quick answer is that the differential operators operate not just on the components
F, F,, F,, but also on the basis vectors €,€,,€,. In most orthonormal coordinate

systems, these basis vectors are not constant.  The divergence therefore contains
additional terms.

ﬁi + e—zi + Ei '(F1e1 + Fe, + Fses) =
h éu,  h,ou, h,au,

€28 O ie & + €, 0¢ 1+ie o © + il 1+ie .% +
h oy kT ou, h, P eu, ) | kT eu, h T ou

e ee, OF, F oe, 2%6
-2 + —Ze,
au, h ' ooy h, au, /h/au h, 5
eloe3_3+5e .8e3 L] E28 0K K .6 3 g, o€ 6F3+5e oe; | _
ou, htou ) | hoau, h o au, h, au, h, ° au,

10F F oe, F oe, F oe,
———+ e e — |+|—e,0— [+| e, 0 — |+
hou h ou, h, au, h, ou,

Frp 08| (LoR R oe) (R o8],
h, ou, h,ou, h, au, h, ou,
P ol (B o0 1K K, 08

h, ou, h, ou, h,ou;, h, ou,

For Cartesian coordinates, all derivatives of any basis vector are zero, which leaves the
familiar Cartesian expression for the divergence. But for most non-Cartesian coordinate
systems, at least some of these partial derivatives are not zero. More complicated
expressions for the divergence therefore arise.
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Example 1.7.1 (continued)

For cylindrical polar coordinates, we have

Ean+iA _p ¢. i’\ _p +
10op op o, 6¢ oz

F, . 0% F Fs b - 24
_? A2 ¥ +[1 ¢ 8¢J — K — | +
pop p

o] 4] - 258

But none of the basis vectors varies with p or z * and the basis vector k is absolutely
constant. Therefore the divergence becomes

10F, o)o[Fega2p
(1 ap +Oj+(p / 6¢]+(0)+

p 09 o¢
5 - F - 05 F . - F
But 22 - § (_P¢.a_pj:(_/’¢.¢] _
p 0 p p
o¢ - F, - 09 (F«ﬁ“ Aj
d—:— [ = _ o|— :0
and 25 =P [ ¢ an ¢ (-P)

So we recover the cylindrical polar form for the divergence,

_ oF F oF
dvE =22, 5 1% OF
op p pOop Oz

*  Asshown here, the basis vectors o and ¢3
clearly vary with ¢ but do not change with p.

k is an absolute constant.
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In spherical polar coordinates, naming the three basis vectors as T, 6, ¢3 we have:
F=rf+08+0¢=(00)

The relationship to the Cartesian coordinate system is
X =rsinfcos¢g, y=rsin@dsing, z =rcosé.

One of the scale factors is

R ORCRG!

\/(rcose cosg)” +(rcos@sing)’ +(-rsin@)’
r\/coszﬁ (cosz¢+sin2¢)+sin26 = ry/cos’ @ +sin’@ =r

In a similar way, we can confirm that h, =1 and h,=rsiné.

h6‘

dV = (Ixrxrsin@)drdfdg = r’singdrdodg

ds® = (1dr)2 + (rd@)2 + (rsin0d¢)2 =dr® + r’d@® + r*sin9dg’

y-ro, 99, ¢ 0
1or r o6 rsing o¢
VV = fa—v + Q@_V + ¢ 5_V
or r 06 rsing 0¢
VeF — 1 _ 8(rxrsin¢9fr)+ 8(rsin0x1f0)+ 8(1><r f¢)
Ixrxrsing or 00 og

or 00 o¢
., 2, 1of, cotd 1 afy

o(r? f i of
- 1 Lsinﬁ( r)+ra(5|r]6f9)+r ¢]

+ —_—
or r " roo r 7 rsing o¢
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t r@ rsinog
v)(rj = 5 1 i i i
resing | or 06 o¢p
fo rf, rsinéf,

1 0 (r?sin@ oV 0 (rsineavj 0 r ov
VA = — — — |+ = — =] —
resing\ or 1 or 06 r 060) og\rsing o¢

1 .0 ,0V o( . .oV 1 ooV
= —— sinf—| r-— +—(sm6’—}+_—— —
resinéd or or 06 00 ) sinf og\ o

oV 26V 10V  cotdoV 1 oV
i S LY IR S B 2
or r or r-oé r 06 r°sin“6 o¢

All of the above are undefined on the z-axis (sin & = 0), where there is a coordinate

singularity. However, by taking the limit as sind — 0, we may obtain well-defined
values for some or all of the above expressions.
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Example 1.7.2
A vector field has the equation, in cylindrical polar coordinates (p, ¢, z),
FoXe K5
pr P

Find the divergence of F and the value of n for which the divergence vanishes for all
p>0.

In cylindrical polar coordinates,

_ oF F 0
divF = —”+—p+>§+§:§
o p

= divF = —knp " + ke Lo40 = k(1-n)p™*
p _—

and clearly divF =0 when n=1.

K . . . .
F = — p is therefore a source-free field everywhere except on the z axis.
o
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Example 1.7.3

In spherical polar coordinates,

F(r.0.¢) = f(g)cotot — 2 (¢)0 + g(r,0)¢ ,
where f(¢) is any differentiable function of ¢ only
and g (r, 6 is any differentiable function of r andé@ only.

Find the divergence of F.

F.=f(¢)cotd, F,=-2f(g), F¢:g(r,<9)

For spherical polar coordinates,

o o(r’F i oF

VeoF = - L lsing ( r)+r6(sm0F9)+r ¢J
resind or 00 o¢

_ o(r f to ~2si

VeF = — 1 sin@ (r (¢)CO )+r6( ZSIan(¢))+rﬁg(r16)J
r<siné or 00 o¢

f(g)ooto o(r*)  2f(¢) a(sine)
r? or rsin@ o6

+0

2f (¢)cotd ~ 2f (¢)cotd _
r r

0

everywhere (except possibly on the z axis, where r sing=0).
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Example 1.7.4

Find curl(sina(é + q?)) where 6, ¢ are the two angular coordinates in the standard

spherical polar coordinate system.

t r@ rsinog r ré rsindg
VxFo_+ |2 02 o | 1 jo o 2
resin@ | or 06 o¢p resing |or 06 o¢p

fo rf, rsingf, 0 rsin@ rsin’@

= 1 2rsin@cos@ —0)f + r(0—sin6)d + rsind(sind—0 ;13
r’siné

VxF = E(ZCOSHIA’ —sind @ + sineqz)
r
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Central Force Law

If a potential function V(X, y, z), (due solely to a point source at the origin) depends only
on the distance r from the origin, then the functional form of the potential can be
deduced. Using spherical polar coordinates:

V(r 6¢ = f(n
= V& = %i(rzﬂj = dz: + 2df

redr dr dr r dr
But, in any regions not containing any sources of the vector field, the divergence of the
vector field F = VV (and therefore the Laplacian of the associated potential function V)
must be zero. Therefore, for all r = 0,

d?f 2 df
+—=0
dr? r dr

Solve this ODE by reduction of order:

Y [N Iny = -2Inr+C = In(Br?)

L V(r,0,4) = A -

ﬁlw

OR (a much faster solution!)

I R
r-dar r r

& By A B
dr r r
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Gravity is an example of a central force law, for which the potential function must be of
the form V (r,<9,¢) = A - E The zero point for the potential is usually set at infinity:
r

limV = Iim(A—Ej: A=0

r—ow r—owo r

The force per unit mass due to gravity from a point mass M at the origin is

Fo-yv =M
r

But, in spherical polar coordinates,

A

v -V LI, ¢ a_V:fd_Vz,ﬁEZ
or r 06 rsing 0¢ dr r

Therefore the gravitational potential function is

_GM
r

V(r) =

The electrostatic potential function is similar, with a different constant of proportionality.

END OF CHAPTER 1
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